Synthesis and reactions of ene-hydrazone diphosphine iridium complexes and related species [†]

Sarath D. Perera and Bernard L. Shaw*

School of Chemistry, University of Leeds, Leeds, UK LS2 9JT

Treatment of the azine diphosphine Z,Z-PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂I with [IrCl(CO)₂(H₂NC₆H₄Me-4)] in benzene gave the ene-hydrazone diphosphine iridium(III) hydride [IrH(CI)(CO)] PPh,CH=C(Bu^t)N-N=C(Bu^t)-N=C(Bu^t (Bu^t)=N-N=C(Bu^t)CH₂PPh₂}]Cl 2a, containing an azine diphosphine. Treatment of 1 with NEt₃ gave the neutral ene-hydrazone diphosphine iridium(1) complex [Ir(CO){PPh₂CH=C(Bu^t)N-N=C(Bu^t)CH₂PPh₃}] 3 which is reactive and undergoes oxidative addition of H_2 to give the iridium(III) dihydride mer, cis-[IrH₂(CO){PPh₂CH= C(Bu^t)N–N=C(Bu^t)CH₂PPh₂] 4 and oxidative addition of MeI to give the methyliridium(III) complex [IrMe(I)-(CO){PPh₂CH=C(Bu^t)N-N=C(Bu^t)CH₂PPh₂] **5**. It reacted rapidly with olefins or acetylenes (L), *i.e.* N-methylmaleimide, ethene or dimethyl acetylenedicarboxylate, to give the five-co-ordinate adducts [Ir(CO)L{PPh2CH= $C(Bu^{t})N-N=C(Bu^{t})CH_{2}PPh_{2}]$, 6a, 6b or 6c, respectively, also with O₂ to give the η^{2} -dioxygen adduct [Ir(CO)- (η^2-O_2) {PPh₂CH=C(Bu^t)N-N=C(Bu^t)CH₂PPh₂}]7. Treatment of 3 with 1 mol of picric acid protonated the enehydrazone diphosphine backbone to give the azine diphosphine iridium(1) salt $[Ir(CO){PPh_2CH_2C(Bu^t)=N-N=}]$ $C(Bu^{t})CH_{2}PPh_{2}][OC_{6}H_{2}(NO_{2})_{3}]$ 2b. The *N*-methylmaleimide adduct 6a was similarly protonated to give the corresponding azine diphosphine iridium(i) salt [Ir(CO)(η^2 -COCH=CHCONMe){PPh_2CH_2C(Bu^t)=N-N=C(Bu^t)-C(Bu^t)-N=C(Bu^t)-C($CH_{2}PPh_{2}[OC_{6}H_{2}(NO_{2})]$ 8. Complex 1 was protonated by HCl to give the corresponding azine diphosphine iridium(III) salt [IrH(Cl)(CO){PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂}]Cl 9a, which is converted into 3 when treated with NEt₃. The ¹H, ¹³C and ³¹P NMR and some IR data are given.

Azines, $R_2C=N-N=CR_2$, formed by condensing hydrazine with a ketone (or aldehvde) are often very stable entities and we have used azine backbones to generate new kinds of tertiary phosphine-metal chemistry very successfully. We have described, for example, the azine diphosphine PPh₂CH₂-C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂, prepared by lithiation of tertbutyl methyl ketazine, followed by treatment with Ph₂PCl.¹ This diphosphine is in a Z,Z configuration and commonly bridges metals. Using it as a bridging ligand, we have made binuclear palladium(II) complexes with 18 atom rings or a polynuclear complex with platinum(II), probably hexanuclear, with a 54 atom ring.^{2,3} However, it can form a nine-membered chelate ring with gold(I).⁴ The energy barrier to rotation around a C=N bond is low and PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂ frequently reacts in the E,Z configuration with metals. Again a nine-membered chelate ring can form, e.g. with Cr, Mo or W¹ or Pt.^{2,3} More commonly, *E*,*Z*-PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)- CH_2PPh_2 acts as a terdentate P, N, P bonded ligand with fiveand six-membered fused chelate rings as with Cr, Mo or W,1 Pd^{II} , Pt^{II} or $Pt^{IV2,3}$ or $Ir^{I,5,6}$ We have also shown that in some metal complexes containing the terdentate E,Z-diphosphine ligand PPh2CH2C(But)=N-N=C(But)CH2PPh2 reversible deprotonation of a CH₂ group adjacent to co-ordinated PPh₂ can occur giving a terdentate ene-hydrazone diphosphine ligand, PPh2CH=C(But)-N-N=C(But)CH2PPh2; this has been developed into a new method of generating co-ordinative unsaturation.5,6

In the present paper we describe a new, highly reactive neutral iridium(I) complex containing this ene-hydrazone ligand together with its reactions. For the convenience of the reader the various reactions are shown in Schemes 1-3 and the characterising NMR data for the various complexes are given in Tables 1-3.

Results and Discussion

Previously⁶ we have reported that treatment of [IrCl(CO)₂- $(H_2NC_6H_4Me-4)$]⁷ with Z,Z-PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)-CH₂PPh₂ I, in benzene, gives the octahedral iridium(III) hydride 1 containing the ene-hydrazone diphosphine ligand. However, when 1 is dissolved in a polar solvent such as ethanol or methanol it very rapidly isomerises to the square planar iridium(I) salt 2a containing the terdentate diphosphine ligand E,Z-PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂. Hydrogen migration from the azine backbone is rapid and, on dissolution of 2a in benzene or dichloromethane, isomerisation back to 1 occurs rapidly and essentially completely. We now find that when the neutral octahedral iridium(III) hydride 1 is treated with triethylamine, 1 molecule of HCl is removed and the orange square planar neutral iridium(I) complex 3 is formed in good (>70%) yield. Complex 3 contains a terdentate ene-hydrazone diphosphine ligand. This iridium(I) carbonyl complex shows v(C=O)at 1945 cm⁻¹ in dichloromethane solution (see Experimental section for IR and elemental analytical data). The ³¹P-{¹H} NMR spectrum shows an AX pattern with strongly coupled *trans*-phosphorus atoms $[^{2}J(PP) = 299 \text{ Hz}]$. The ¹H and ¹H-{³¹P} NMR data are in complete accord with the assigned structure, in particular, the olefinic proton of the enehydrazone system gave a doublet of doublets at δ 5.04 [J(PH) = 3.9, 3.2 Hz]. In the ¹³C-{¹H} NMR spectrum the resonances of all four carbons of the ene-hydrazone backbone and of the C=O carbon and also of the two *tert*-butyl groups are assigned (see Table 3). The methylene carbon gave a doublet at δ 20.0 [¹J(PC) = 23.4 Hz]; this chemical shift is typical of methylene carbon in a six-membered chelate ring.^{2,3,8,}

On maintaining a C_6D_6 solution of the iridium(I) complex **3** under 1 atm (101 325 Pa) of dihydrogen the orange solution gradually became paler and a new species was formed over 20 h, as shown by ³¹P-{¹H}, ¹H and ¹H-{³¹P} NMR studies. We formulate this new species as the iridium(III) dihydride **4** (Scheme 2). This dihydride was labile and we were unable to isolate it; the

[†] Dedicated to Professor Warren Roper on the occasion of his 60th birthday.

assigned structure **4** is based on the NMR evidence. The ³¹P-{¹H} NMR spectrum showed that the two phosphorus were mutually *trans* with ²*J*(PP) = 301 Hz (Table 1). The ¹H and ¹H-{³¹P} NMR spectra (data in Table 2) show two hydrides mutually *cis*, ²*J*(HH) = 4.2 Hz. The hydride resonating at δ -15.78 is

Scheme 1 (*i*) [IrCl(CO)₂(H₂NC₆H₄Me-4)]; (*ii*) EtOH or MeOH; (*iii*) CH₂Cl₂ or C₆H₆; (*iv*) HCl; (*v*) NH₄PF₆; (*iv*) NEt₃

probably *trans* to nitrogen and other iridium hydrides with hydride *trans* to a nitrogen donor ligand typically resonate at *ca*. $\delta - 16$.⁶ The other hydride resonance at $\delta - 8.62$ is assigned to the hydride *trans* to C=O; other iridium hydrides with H *trans* to C=O resonate at δ *ca*. -8.¹⁰⁻¹³ The small coupling constants to phosphorus of 10.0 and 14.3 ($\delta - 15.78$) and 9.4 Hz ($\delta - 8.62$) show that both hydrides are *cis* to both phosphorus atoms.

The iridium(I) complex **3** reacts with methyl iodide over 3 h to give a methyliridium(III) complex formulated as **5**. The elemental analysis (Experimental section) and value of v(C=O) 2015 cm⁻¹ are in agreement with the assigned structure. The ³¹P-{¹H} NMR spectrum showed that the *mer* geometry of the terdentate phosphine was retained with ²J(PP) = 353 Hz. In the ¹H NMR spectrum the IrCH₃ gave a triplet at δ 0.14 with ³J(PH) = 5.3 Hz and in the ¹³C-{¹H} NMR spectrum the CH₃ carbon gave a triplet at δ -8.6, ²J(PC) = 3.5 Hz. These triplets might be deceptively simple and arise because of a second order phenomenon, since the phosphorus atoms are very strongly coupled, although non-equivalent. The other proton and carbon-13 data are consistent with the assigned structure **5**.

The iridium(I) complex **3** reacted rapidly with olefins (*N*-methylmaleimide or ethene), or with the acetylene MeO₂-CC=CCO₂Me, to give adducts (Scheme 2). We formulate these as **6a**, **6b**, and **6c**, respectively. *N*-Methylmaleimide when added to an orange solution of **3** in dichloromethane reacted over 15 min (${}^{31}P{}_{1}H$) NMR evidence) and the yellow *N*-methylmaleimide adduct **6a** was isolated in 86% yield. It was characterised by elemental analysis and the IR spectrum. The ${}^{31}P{}_{1}$

Table 1	³¹ P-	${}^{1}H$	NMR	data a
---------	------------------	-----------	-----	--------

Compound	$\delta(\mathbf{P}_{\mathbf{A}})$	$\delta(\mathbf{P}_{\mathbf{B}})$	$^{2}J(\text{PP})/\text{Hz}$
I,	-144	· .	
1 ^b	44.3	20.3	312
2a ^b	60.6	56.0	303
2b ^{<i>c,d</i>}	60.8	55.5	306
3 ^e	60.3	34.1	299
4 ^e	46.6	13.8	301
5 ^{<i>d</i>}	37.3	17.0	353
6a ^{c,d}	12.0	9.3	22
6b ^{<i>d,f</i>}	43.4	15.8	49
6c ^{<i>d</i>}	8.5	3.3	25
7 ^e	14.6	1.1	396
8 ^{<i>d</i>}	35.8	9.3	32
9a °	40.7	25.4	318
9b ^c	41.9	25.6	317

^{*a*} Recorded at 36.2 MHz, chemical shifts (δ) in ppm relative to 85% H₃PO₄, solvent CD₂Cl₂ unless otherwise stated. ^{*b*} From ref. 6. ^{*c*} In CDCl₃. ^{*d*} At 101.2 MHz. ^{*e*} In C₆D₆. ^{*f*} Recorded at -80 °C, but at 20 °C, δ (P_A) 55.1, δ (P_B) 26.3 and ²J(PP) = 210 Hz.

Scheme 2 (i) $HOC_6H_2(NO_2)_3$ -2,4,6; (ii) H_2 ; (iii) MeI; (iv) for complex 6a, N-methylmaleimide; for 6b, ethene; for 6c, $MeO_2CC\equiv CCO_2Me$; (v) O_2

Table 2 Proton NMR data^a

Compound	$\delta(Bu^t)$	$\delta(CH_2P)$	Others
I ^b	0.90 (18 H, s)	3.26 [4 H, d, ² <i>J</i> (PH) 3.9]	
1 ^b	0.77 (9 H, s)	$3.03 [1 \text{ H}, \text{m}, {}^{2}J(\text{HH}) 11.7]$	-15.40 [1 H, dd, ² J(PH) 11.4, 10.6, IrH]
	1.66 (9 H, s)	3.99 [1 H, dd, ² J(HH) 11.7, ² J(PH) 12.5]	4.80 [1 H, t, ${}^{2}J(PH) = {}^{4}J(PH)$ 4.9, PCH=]
2b ^{<i>c,d</i>}	0.83 (9 H, s)	3.63 [2 H, dd, ² J(PH) 11.8, ⁴ J(PH) 2.0]	8.73 [2 H, s, $OC_6H_2(NO_2)_3$]
	1.20 (9 H, s)	4.35 [2 H, dd, ² <i>J</i> (PH) 8.9, ⁴ <i>J</i> (PH) 4.2]	
3 ^e	0.85 (9 H, s)	3.13 [2 H, dd, ² J(PH) 12.0, ⁴ J(PH) 2.7]	5.04 [1 H, dd, <i>J</i> (PH) 3.9, 3.2, PCH=]
	1.66 (9 H, s)		
4 ^e	0.96 (9 H, s)	2.82 [1 H, dd, ² <i>J</i> (HH) 11.7, ² <i>J</i> (PH) 12.8]	-15.78 [1H, ddd, ² <i>J</i> (HH) 4.2, ² <i>J</i> (PH) 10.0, 14.3, IrH]
	1.68 (9 H, s)	3.44 [1 H, m, ² <i>J</i> (HH) 11.7, ² <i>J</i> (PH) 12.5, ⁴ <i>J</i> (PH) 2.9]	-8.62 [1 H, dt, ² J(HH) 4.2, ² J(PH) 9.4, IrH]
			4.81 [1 H, dd, <i>J</i> (PH) 5.1, 3.0, PCH=]
5 ^{<i>d</i>}	1.02 (9 H, s)	$3.24 [1 \text{ H}, \text{dt}, {}^{2}J(\text{HH}) = {}^{2}J(\text{PH}) 12.3, {}^{4}J(\text{PH}) 3.5]$	$0.14 [3 \text{ H}, \text{t}, {}^{3}J(\text{PH}) 5.3, \text{ IrMe}]$
	1.42 (9 H, s)	$3.53 [1 \text{ H}, \text{dt}, {}^{2}J(\text{HH}) = {}^{2}J(\text{PH}) 12.3, {}^{4}J(\text{PH}) 2.1]$	4.87 [1 H, dd, <i>J</i> (PH) 5.1, 3.9, PCH=]
6a ^{<i>c</i>,<i>a</i>}	0.97 (9 H, s)	2.59 [1 H, dt, ${}^{2}J(HH) = {}^{2}J(PH)$ 14.2, ${}^{4}J(PH)$ 1.5]	2.85 (3 H, s, NMe)
	1.30 (9 H, s)	3.26 [1 H, dd, J(HH) 14.2, J(PH) 11.7]	3.17 [1 H, m, ³ <i>J</i> (HH) 4.8, ³ <i>J</i> (PH) 8.7, 4.1, =CH]
			3.52 [1 H, m, ³ J(HH) 4.8, ³ J(PH) 10.4, 2.7, =CH]
adf	0 (4 (0 II)	$2.24[111, \frac{2}{3}]$ (111) $\frac{2}{3}$ (111) $\frac{2}{3}$ (111) $\frac{12}{3}$	4.26 [I H, d, J(PH) 4.4, PCH=]
6D".,	0.64 (9 H, s)	2.34 [1H, t, $J(HH) = J(PH)$ [2]	$1.15 (1 H, m, CH_2=CH_2)$
	1.13 (9 H, s)	3.29 [1H, t, J(HH) = J(PH) 12]	$1.83 (1 H, m, CH_2=CH_2)$
			$2.00(1 \text{ H}, \text{m}, \text{CH}_2 = \text{CH}_2)$
			2.41 (1 Π , III, $\Box_{12} = \Box_{12}$) 2.08 [1 Π d $I(\Pi \Pi)$ 2.2 $\Pi \subset \Pi_{-1}$]
60 ^d	101(0H s)	2.50 [1 H ddd $^{2}I(HH)$ 15.6 $^{2}I(PH)$ 13.8 $^{4}I(PH)$ 2.0]	3.90 [1 11, 0, J(F11) 2.3, FC11=]
0C	1.01(911, s) 1.33(9H s)	2.59 [1 H, ddd, $3(111)$ 15.6, $3(111)$ 15.8, $3(111)$ 2.0] 3 43 [1 H dd ${}^{2}I(HH)$ 15 6 ${}^{2}I(PH)$ 11 7]	3.41(3.11, 3, OMe)
	1.55 (7 11, 5)	5.45 [1 11, dd, 5 (111) 15.6, 5 (111) 11.7]	4 15 [1 H d <i>I</i> (PH) 3 9 PCH–]
7 ^e	0.81 (9 H. s)	2.91 [1 H m ² <i>I</i> (HH) 12.8 ² <i>I</i> (PH) 13.0 ⁴ <i>I</i> (PH) 2.5]	4.90[1 H, d, J(PH) 5.1, 4.2, PCH=]
	1.73 (9 H, s)	$3.33 [1 \text{ H, t.}^{2} J(\text{HH}) = {}^{2} J(\text{PH}) 12.8]$	
8 ^{<i>d</i>}	0.89 (9 H, s)	2.52 [1 H, t, ${}^{2}J(HH) = {}^{2}J(PH)$ 12.8]	3.06 (3 H. s. NMe)
	1.47 (9 H, s)	3.89 [1 H, t, ² J(HH) 12.8, ² J(PH) 13.0]	3.19 [1 H, dt, ${}^{3}J(HH)$ 5.2, ${}^{3}J(PH)$ 6.2, 5.1, =CH]
		$4.03 [1 \text{ H}, \text{m}, {}^{2}J(\text{HH}) 19.2]^{g}$	$4.02 [1 \text{ H}, \text{m}, {}^{3}J(\text{HH}) 5.2, \text{PCH}=]^{g}$
		4.73 [1 H, dd, ² J(HH) 19.2, ² J(PH) 12.0]	$8.75 [2 H, s, OC_6H_2(NO_2)_3]$
9 a ^d	0.79 (9 H, s)	3.33 [1 H, dt, ${}^{2}J(HH) = {}^{2}J(PH)$ 12.0, ${}^{4}J(PH)$ 1.8]	-15.35 [1 H, dd, ² J(PH) 10.0, 7.7, IrH]
	1.21 (9 H, s)	3.70 [1 H, m, ² <i>J</i> (HH) 12.0, ² <i>J</i> (PH) 14.5, ⁴ <i>J</i> (PH) 5.5]	
		4.45 [1 H, ddd, ² <i>J</i> (HH) 17.8, ² <i>J</i> (PH) 12.8, ⁴ <i>J</i> (PH) 8.0]	
		4.70 [1 H, ddd, ² <i>J</i> (HH) 17.8, ² <i>J</i> (PH) 10.0, ⁴ <i>J</i> (PH) 2.6]	
9b ^{<i>a</i>}	0.74 (9 H, s)	3.46 [1 H, dt, ${}^{2}J(HH) = {}^{2}J(PH)$ 12.1, ${}^{4}J(PH)$ 1.3]	-15.11 [1H, dd, ² J(PH) 9.5, 7.5, IrH]
	1.29 (9 H, s)	3.71 [1 H, m, ² <i>J</i> (HH) 12.1, ² <i>J</i> (PH) 15.1, ⁴ <i>J</i> (PH) 6.3]	
		4.34 [1 H, ddd, ² <i>J</i> (HH) 17.6, ² <i>J</i> (PH) 12.8, ⁴ <i>J</i> (PH) 8.0]	
		4.79 [1 H, ddd, ² J(HH) 17.6, ² J(PH) 10.3, ⁴ J(PH) 2.4]	

^{*a*} Recorded at 100 MHz, chemical shifts are in ppm relative to SiMe₄, *J* values are in Hz, solvent CD₂Cl₂ unless otherwise stated, s = singlet, d = doublet, t = triplet, dd = doublet of doublets, dt = doublet of triplets, ddd = double doublet of doublets, m = multiplet. ^{*b*} From ref. 6. ^{*c*} In CDCl₃. ^{*d*} At 250 Mz. ^{*e*} In C₆D₆. ^{*f*} At -80 °C. At 20 °C the free ethene and complexed ethene gave a broad peak at δ 5.12, w₁ ca. 7.7 Hz, whilst on the NMR timescale the CH₂ protons gave a doublet at δ 3.09, ²*J*(PH) = 10.8 Hz and the PCH= proton a broad peak at δ 4.56 with unresolved coupling to P, the two Bu^t groups absorbed as singlets at δ 0.80 and 1.34. ^{*g*} Coupling to phosphorus nuclei not resolved.

{¹H} NMR spectrum showed that the phosphorus atoms were no longer *trans* with ${}^{2}J(PP) = 22$ Hz. The proton NMR data showed that the co-ordinated N-methylmaleimide moiety was bonded to iridium in a static fashion on the NMR timescale and that the CO-CH=CH-CO hydrogens were non-equivalent, δ 3.17 and 3.52 and mutually coupled, with ${}^{3}J(\text{HH}) = 4.8$ Hz, and each coupled to phosphorus. The CH proton of the enehydrazone backbone absorbed at δ 4.26 [*J*(PH) = 4.4 Hz]. We formulate the complex as having the N-methylmaleimide in approximately the same plane as the P-Ir-P moiety, as found for many other trigonal bipyramidal five-co-ordinate olefinic phosphine complexes.¹⁴ In the ¹³C-{¹H} NMR spectrum both CH=CH carbons gave a doublet of doublets, i.e. they are coupled to both phosphorus atoms. One coupling (presumably due to the trans phosphorus) was much larger than the other coupling, viz. for $\delta_{\rm C}$ 36.9, ${}^2J(\rm PC) = 27.5$ and 5.5 Hz and for $\delta_{\rm C}$ 39.1, ${}^{2}J(PC) = 33.5$ and 4.6 Hz. The other proton (Table 2) and carbon-13 (Table 3) data are consistent with the assigned structure 6a.

A CD₂Cl₂ solution of complex **3** reacted rapidly with ethene to give essentially a single product (adduct) which we formulate as **6b** and which was characterised only in solution. At -80 °C, the ³¹P-{¹H} NMR spectrum showed ²*J*(PP) = 49 Hz, *i.e.* the phosphorus atoms are no longer mutually *trans.* The proton NMR data show that at -80 °C all four ethene hydrogens are non-equivalent [δ 1.15 (m), 1.83 (m), 2.06 (m) and 2.41 (m)], *i.e.* it is not rotating fast on the NMR timescale. All four hydrogens

were also coupled to phosphorus. The other data, *e.g.* for PCH= and PCH₂, are consistent with the structure **6b**. At 20 °C (see Table 2) the free ethene and complexed ethene were exchanging rapidly, giving a single broadened peak and this caused equivalence of the two CH₂P protons of the ene-hydrazone backbone.

Dimethyl acetylenedicarboxylate reacted over a period of a few minutes at *ca.* 20 °C with complex **3** to give an adduct **6c**. This was characterised by elemental analytical and IR data, *e.g.* v(C=O) 1990 and v(C=O) 1700 and 1680 cm⁻¹. As with the *N*-methylmaleimide adduct the ²J(PP) for **6c** was small (25 Hz). The proton NMR data for **6c** show non-equivalent OCH₃ groups, a PCH= proton and two non-equivalent PCH₂ protons, as for **6a**. This complex was very labile in CD₂Cl₂ solution and had decomposed extensively within 2 h at 20 °C.

An orange solution of complex **3** in C_6D_6 reacted slowly over a period of 7 h at *ca.* 20 °C with dioxygen to give a single product, as evidenced by the ³¹P-{¹H}, ¹H, ¹H-{³¹P} and ¹³C-{¹H} NMR data. We tentatively formulate this as the η^2 -O₂ complex **7**. This showed a large value for ²*J*(PP) of 396 Hz indicating that the ene-hydrazone diphosphine was still coordinated with the two phosphorus atoms mutually *trans*. The proton NMR data showed two *tert*-butyls, a CH₂ group with non-equivalent hydrogens and a single CH= hydrogen. This dioxygen adduct was labile and decomposed on attempted isolation.

We have shown previously³ that ene-hydrazone diphosphine

Table 3 ¹³ C-{ ¹ H	H} NMR data ^a					
Compound	$\delta(CMe_3)$	δ(CMe ₃)	δ(CH ₂)	δ(C=N)	δ(C=O)	Others
1 ^{<i>b</i>}	28.8 (s) 31.7 (s)	39.4 (d, 15.2) 39.5 (d, 3.6)	20.5 (d, 26.2)	190.6 (dd, 17.2, 1.8)	169.9 (t, 7.9)	74.4 (d, 66.5, PCH=) 149.6 (d, 3.7, =CN)
3°	28.6 (d, 1.4) 31.2 (s)	38.9 (d, 13.9) 39.0 (d, 2.2)	20.0 (d, 23.4)	191.7 (dd, 21.0, 2.0)	184.0 (t, 9.7)	77.6 (d, 60.5, PCH=) 150.6 (d, 3.5, =CN)
5 ^{<i>d</i>}	29.2 (s) 30.8 (s)	39.0 (d, 13.9) 39.2 (d, 3.2)	19.2 (d, 24.8)	190.5 (dd, 15.5, 2.2)	171.7 (t, 8.0)	-8.6 (t, 3.5, IrMe) 73.5 (d, 68.1, PCH=) 151.3 (d, 4.1, =CN)
6a ^{<i>c,d</i>}	28.4 (s) 30.2 (s)	37.1 (d, 14.2) 39.4 (d, 4.3)	26.8 (dd, 24.8) ^e	184.7 (d, 15.7)	158.4 (t, 4.1)	22.5 (s, NMe) 36.9 (dd, 27.5, 5.5, CH=) 39.1 (dd, 33.5, 4.6, CH=) 72.6 (d, 65.5, PCH=) 137.9 (dd, 46.7, 1.9, =CN) 178.6 (d, 3.7, C=O) 179.8 (dd, 3.7, 1.6, C=O)
7 ^{<i>f</i>}	28.8 (s) 31.7 (s)	39.7 (d, 12.4) 40.0 (d, 2.8)	19.8 (d, 27.6)	192.9 (d, 13.3)	168.9 (t, 8.5)	76.0 (d, 66.8, PCH=) 147.4 (d, 3.0, =CN)
9a °	27.0 (s) 28.4 (s)	40.7 (d, 1.9) 41.3 (d, 5.4)	23.8 (d, 24.6) 42.1 (d, 35.7)	173.5 (d, 2.3) 191.7 (t, 2.8)	162.2 (t, 7.3)	
9b	26.9 (s) 28.3 (s)	41.2 (d, 1.9) 41.7 (d, 5.5)	23.3 (d, 25.4) 41.5 (d, 35.7)	174.5 (s) 192.8 (t, 2.7)	162.0 (t, 7.7)	

^{*a*} Recorded at 100.6 MHz, chemical shifts are in ppm relative to SiMe₄, solvent CD₂Cl₂ unless otherwise stated and J(PC)/Hz values are given in parentheses. ^{*b*} From ref. 6. ^{*c*} In CDCl₃. ^{*d*} At 62.9 MHz. ^{*e*4}J(PC) = 2.3 Hz. ^{*f*} In C₆D₆.

Scheme 3 L = N-Methylmaleimide. (*i*) HOC₆H₂(NO₂)₃-2,4,6

ligands on platinum or palladium are reversibly protonated at the ene-hydrazone carbon, *viz*. PCH= to give PCH₂ thereby generating the corresponding azine diphosphine complex. However, square planar iridium(I) phosphine complexes, *e.g.* of type *trans*-[IrX(CO)(PR₃)₂] (X = Cl, Br or I; R = alkyl or aryl), are well known to protonate on iridium giving an iridium hydride. We find that the ene-hydrazone diphosphine iridium(I) complex **3** reacts rapidly and exclusively with 1 mol of picric acid to give the square planar azine diphosphine iridium(I) cation, isolated as the picrate salt **2b**. This was fully characterised by elemental analysis, its IR spectrum, and by ³¹P-{¹H}, ¹H and ¹H-{³¹P} NMR spectroscopy, see Experimental section and Tables 1 and 2.

We now show that the five-co-ordinate *N*-methylmaleimide adduct **6a** is protonated by picric acid, exclusively on the enehydrazone diphosphine backbone to give an azine diphosphine backbone, *i.e.* conversion into an *N*-methylmaleimideiridium(I) cationic complex containing an azine moiety occurred and this was isolated as the picrate salt **8** (Scheme 3). We have previously prepared the cation [Ir(CO)-(η^2 -COCH=CHCONMe){PPh_2CH_2C(Bu^t)=N-N=C(Bu^t)CH_2-PPh_2}]⁺ directly by treating **2a** with *N*-methylmaleimide⁶ and determined the crystal structure of its PF₆ salt [Ir(CO)-(η^2 -COCH=CHCONMe){PPh_2CH_2C(Bu^t)=N-N=C(Bu^t)CH_2-PPh_2}]PF₆.⁶

We have now converted the ene-hydrazone backbone of the neutral iridium(III) hydride complex 1 into the corresponding cationic azine diphosphine complex hydride **9a** by bubbling hydrogen chloride into a benzene solution of 1 (Scheme 1). The salt **9a** separated as a white solid. This was somewhat labile but was readily converted into the corresponding PF_6 salt **9b** by treating a solution of **9a** in methanol with NH_4PF_6 . This azine diphosphine iridium(III) hydride **9b** was characterized by elemental analysis and infrared spectroscopy, v(Ir–H) 2205, v(C=O) 2075 cm⁻¹. The ³¹P-{¹H} NMR spectrum established that the

azine diphosphine was *mer* with ²*J*(PP) = 317 Hz; and in the ¹H and ¹H-{³¹P} NMR spectra the hydride resonance occurred at δ -15.11 with ²*J*(PH) = 9.5 and 7.5 Hz. Both *tert*-butyl resonances and the resonances of all four hydrogens of the two CH₂ groups were identified. The ¹³C-{¹H} NMR data for **9b** are in Table 3. Although the corresponding chloride salt **9a** was not sufficiently pure for elemental analysis it was characterised by infrared spectroscopy and by ³¹P-{¹H}, ¹H, ¹H-{³¹P} and ¹³C-{¹H} NMR spectroscopy (Tables 1–3). Complex **9a**, when treated with an excess of triethylamine, gave the iridium(I) complex **3** in 72% isolated yield.

Enamines react with electrophiles in what is a very useful and selective synthetic method in organic chemistry. We have shown in our previous work ³ that neutral square planar complexes of Pt^{II} containing the terdentate ene-hydrazone diphosphine PPh₂CH=C(Bu¹)N-N=C(Bu¹)CH₂PPh₂ undergo electrophilic attack by MeI exclusively on the backbone to give corresponding methyl-substituted azine diphosphine-platinum complexes. However, in the present paper we have shown that, in contrast with the behaviour of the platinum(II) complex, the ene-hydrazone diphosphine iridium(I) complex 3 undergoes electrophilic attack by MeI at iridium (*i.e.* oxidative addition). This reflects the greater tendency of iridium(I) to undergo oxidative addition than platinum(II).

It is possible that treatment of the various adducts 4, 5, 6a-6cand even 8 with electrophiles for longer periods or with more vigorous conditions than described here might cause electrophilic attack on the backbone at the PCH= carbon. We have not studied this apart from protonation.

Experimental

All the reactions were carried out in an inert atmosphere of dry nitrogen or dry argon. Infrared spectra were recorded using a Perkin-Elmer 457 grating spectrometer, NMR spectra using a JEOL FX-90Q (operating frequencies for ¹H and ³¹P of 89.5 and 36.2 MHz, respectively), a FX-100 (operating frequencies for ¹H and ³¹P of 99.5 and 40.25 MHz, respectively), a Bruker ARX-250 (operating frequencies for ¹H, ³¹P and ¹³C of 250.1, 101.3 and 62.9 MHz respectively), or a AM-400 spectrometer (operating frequencies for ¹H, ³¹P and ¹³C of 400.13, 161.9 and 100.6 MHz, respectively). The ¹H and ¹³C chemical shifts are relative to tetramethylsilane, the ³¹P shifts to 85% phosphoric acid.

The azine diphosphine Z,Z-PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)-CH₂PPh₂ I and the iridium(III) complex 1 were prepared according to our published procedure.^{1,6}

Preparations

[Ir(CO){PPh₂CH₂C(Bu⁵)=N-N=C(Bu⁵)CH₂PPh₂}][OC₆H₂-(NO₂)₃] **2b.** Picric acid (12 mg, 0.052 mmol) was added to a solution of complex **3** (40 mg, 0.051 mmol) in dichloromethane (*ca.* 1.5 cm³). After 10 min the solvent was removed under reduced pressure and the residue triturated with methanol to give the required product **2b** as yellow microcrystals (36 mg, 69%) (Found: C, 48.6; H, 4.55; N, 6.8. C₄₃H₄₄IrN₅O₈P₂· 0.75CH₂Cl₂ requires C, 48.8; H, 4.25; N, 6.5%). IR (KBr): v(C=O) 1980 cm⁻¹.

[Ir(CO){PPh₂CH=C(Bu^t)N-N=C(Bu^t)CH₂PPh₂}] 3. An excess of NEt₃ (2.5 cm³) was added to a solution of complex 1 (0.57 g, 0.69 mmol) in benzene (10 cm³). After 3 h the resultant orange solution was concentrated to low volume (*ca.* 1 cm³) under reduced pressure. Addition of ethanol to the residue gave the iridium(I) complex 3 as orange microcrystals (0.39 g, 72%) (Found: C, 59.3; H, 5.65; N, 3.35. C₃₇H₄₁IrN₂OP₂·0.75C₆H₆ requires C, 59.15; H, 5.45; N, 3.35%). IR (CH₂Cl₂): v(C=O) 1945 cm⁻¹.

From complex 9a. An excess of NEt₃ (0.5 cm³) was added to a suspension of complex 9a (53 mg, 0.059 mmol) in benzene (2 cm³). After 3 h the solvent was removed under reduced pressure and the residue triturated with ethanol to give the required product 3 as orange microcrystals (33 mg, 72%)

mer,cis-[IrH₂(CO){PPh₂CH=C(Bu')N-N=C(Bu')CH₂PPh₂}] 4. A solution of complex 3 (50 mg, 0.064 mmol) in C₆D₆ (*ca.* 1 cm³) was kept in an atmosphere of dihydrogen for 20 h. The ³¹P-{¹H}, ¹H and ¹H-{³¹P} NMR spectra were recorded, see Discussion and Tables.

[IrMe(I)(CO){PPh₂CH=C(Bu^t)N-N=C(Bu^t)CH₂PPh₂}] **5.** An excess of MeI (0.25 cm³) was added to a solution of complex **3** (40 mg, 0.098 mmol) in CH₂Cl₂ (1 cm³). After 3 h the resultant yellow solution was concentrated to low volume (*ca.* 0.1 cm³) under reduced pressure. Addition of methanol to the residue gave the methyliridium(III) complex **5** as yellow microcrystals (37 mg, 78%) (Found: C, 49.05; H, 4.8; N, 2.95. C₃₈H₄₄IIrN₂OP₂ requires C, 49.3; H, 4.8; N, 3.0%). IR (CH₂Cl₂): v(C=O) 2015 cm⁻¹.

[Ir(CO)(η^2 -COCH=CHCONMe){PPh₂CH=C(Bu')N-N=C-(Bu')CH₂PPh₂}] 6a. *N*-Methylmaleimide (15 mg, 0.135 mmol) was added to a solution of complex 3 (60 mg, 0.077 mmol) in CH₂Cl₂ (1.5 cm³). After 15 min the resultant yellow solution was concentrated to low volume (*ca.* 0.1 cm³) under reduced pressure. Addition of methanol to the residue gave the required complex 6a as yellow microcrystals (59 mg, 86%) (Found: C, 55.25; H, 5.25; N, 4.55. C₄₂H₄₆IrN₃O₃P₂·0.75CH₂Cl₂ requires C, 55.35; H, 5.1; N, 4.6%). IR (KBr): v(C=O) 1995 and v(C=O) 1740 and 1680 cm⁻¹.

[Ir(CO)(η^2 -CH₂=CH₂){PPh₂CH=C(Bu')N-N=C(Bu')CH₂-PPh₂}] 6b. Ethene was bubbled through a solution of complex 3 (20 mg, 0.025 mmol) in CD₂Cl₂ (*ca.* 0.5 cm³) for 3 min. The ³¹P-{¹H}, ¹H and ¹H-{³¹P} NMR spectra were recorded at both 20 and -80 °C (see Tables and Discussion).

$[Ir(CO)(\eta^2-MeO_2CC=CCO_2Me){PPh_2CH=C(Bu')N-N=C-}$

(Bu^t)CH₂PPh₂] 6c. Dimethyl acetylenedicarboxylate (20 mg, 0.14 mmol) was added to a solution of complex 3 (40 mg, 0.051 mmol) in CH₂Cl₂ (1.5 cm³). After 10 min the resultant yellow solution was concentrated to low volume (*ca.* 0.1 cm³) under reduced pressure. Addition of ethanol to the residue gave the

required complex **6c** as yellow microcrystals (35 mg, 74%) (Found: C, 55.65; H, 5.15; N, 2.95. $C_{43}H_{47}IrN_2O_3P_2$ requires C, 55.75; H, 5.1; N, 3.05%). IR (KBr): v(C=O) 1990, v(C=C) 1800, and v(C=O) 1700 and 1680 cm⁻¹.

[Ir(CO)(η^2 -O₂){PPh₂CH=C(Bu')N-N=C(Bu')CH₂PPh₂}] 7. A solution of complex 3 (59 mg, 0.075 mmol) in C₆D₆ (*ca.* 1 cm³) was kept in an atmosphere of dioxygen for 7 h. The ³¹P-{¹H}, ¹³C-{¹H}, ¹H and ¹H-{³¹P} NMR spectra were recorded, see Tables and Discussion.

[Ir(CO)(η²-COCH=CHCONMe){PPh₂CH₂C(Bu⁺)=N-N=C-(Bu⁺)CH₂PPh₂}][OC₆H₂(NO₂)₃] 8. Pierie acid (11 mg, 0.048 mmol) was added to a solution of complex 6a (35 mg, 0.039 mmol) in chloroform (*ca.* 1.5 cm³). After 30 min the solvent was removed under reduced pressure and the residue triturated with methanol to give the required product 8 as yellow microcrystals (35 mg, 79%) (Found: C, 48.1; H, 4.2; N, 6.6. C₄₈H₄₉IrN₆-O₁₀P₂•0.75CHCl₃ requires C, 48.2; H, 4.1; N, 6.9%). IR (KBr): v(C=O) 2035 and v(C=O) 1745 and 1680 cm⁻¹.

[IrH(Cl)(CO){PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂}]Cl

9a. Hydrogen chloride was bubbled through a solution of complex **1** (82 mg, 0.10 mmol) in benzene (*ca.* 1.5 cm³) for 1 min. The resulting white precipitate **9a** was filtered off and washed with benzene. Yield 83 mg, 93%. IR (CH₂Cl₂): v(Ir–H) 2200 and v(C=O) 2070 cm⁻¹.

[IrH(Cl)(CO){PPh₂CH₂C(Bu[†])=N-N=C(Bu[†])CH₂PPh₃]]PF₆ 9b. A solution of NH₄PF₆ (65 mg, 0.40 mmol) in methanol (1 cm³) was added to a solution of complex 9a (60 mg, 0.067 mmol) in methanol (1 cm³). The required iridium(III) complex 9b deposited as white microcrystals. Yield 52 mg, 80% (Found: C, 45.7; H, 4.4; Cl, 3.75; N, 2.9. C₃₇H₄₃ClF₆IrN₂OP₃ requires C, 46.0; H, 4.5; Cl, 3.65; N, 2.9%). IR (CH₂Cl₂): v(Ir–H) 2205 and v(C=O) 2075 cm⁻¹.

Acknowledgements

We thank the SERC for a fellowship (to S. D. P.) and for other support, and Johnson Matthey for a generous loan of iridium salts.

References

- 1 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 1469.
- 2 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1993, 3653.
- 3 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 3311.
- 4 P. A. Cooke, S. D. Perera, B. L. Shaw, M. Thornton-Pett and J. D. Vessey, J. Chem. Soc., Dalton Trans., 1997, 435.
- 5 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1995, 865.
- 6 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1996, 3111 and refs. therein.
- 7 U. Klabunde, Inorg. Synth., 1974, 15, 82.
- 8 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 103.
- 9 U. U. Ike, S. D. Perera, B. L. Shaw and M. Thornton-Pett, *J. Chem. Soc.*, *Dalton Trans.*, 1995, 2057 and refs. therein.
- 10 C. E. Johnson, B. J. Fisher and R. Eisenberg, J. Am. Chem. Soc., 1983, 105, 7772.
- 11 M. J. Auburn, R. D. Holmes-Smith and S. R. Stobart, J. Am. Chem. Soc., 1984, 106, 1314.
- 12 C. J. Moulton and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1976, 1020.
- 13 E. F. Landvatter and T. B. Rauchfuss, Organometallics, 1982, 1, 506.
- 14 S. D. Ittel and J. A. Ibers, Adv. Organomet. Chem., 1976, 14, 33.

Received 16th March 1998; Paper 8/02073F