Complexes of the Bidentate Ligands $\mathrm{PPh}_{\mathbf{2}} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNR}_{2}$ ($\mathrm{R}=\mathrm{H}$ or Me) and $\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{N}-\mathrm{N}=\mathbf{C H P h}$ with Palladium and Platinum. X-Ray Crystal Structure of cis- $\left[\mathbf{P t}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathbf{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathbf{N N H}\right\}_{2}\right] \dagger$

King Kuok Hii, Sarath D. Perera, Bernard L. Shaw* and Mark Thornton-Pett
School of Chemistry, The University of Leeds, Leeds LS2 9JT, UK

Abstract

tert-Butyl diphenylphosphinomethyl ketone dimethylhydrazone L^{1} reacts with $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ (cod $=$ cycloocta-1,5-diene) to give the chelate $\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\dagger}\right)=\mathrm{NNMe} \mathrm{Me}_{2}\right\}\right]$ with a six-membered chelate ring; the corresponding palladium complex was also prepared. The phosphino dimethylhydrazone L^{\prime} or the phosphino hydrazone L^{2} also react with $\left[\mathrm{PtMe}_{2}(\mathrm{cod})\right]$ to give $\left[\mathrm{PtMe}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNR}_{2}\right\}\right]$. ($\mathrm{R}=\mathrm{Me}$ or H); these platinum(II) complexes react with methyl iodide to give the corresponding trimethylplatinum (IV) complexes [$\mathrm{PtMe}_{3} \mid\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNR}_{2}\right\}$]. Treatment of [$\left.\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ with 2 equivalents of L^{2} gave the dication cis- $\left[\stackrel{\left.\mathrm{Pt}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNH}_{2}\right\}_{2}\right]^{2+} \text { isolated as the chloride or }}{ }\right.$ chloride hexafluorophosphate salts. The dicationic dichloride reacted with 2 moles of sodium ethoxide [$\left.\mathrm{Pd}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NN}_{2}\right\}_{2}\right] \mathrm{Cl}_{2}$, which with sodium ethoxide gave the neutral trans$\left.\left[\mathrm{Pd}^{\prime} \mathrm{PPR}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NN} \mathrm{H}\right\}_{2}\right]$. The mixed azine monophosphine $\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CHPh} \mathrm{L}^{3}$ with $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ gave the chelate complex $\left[\mathrm{PdCl}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu} \mathrm{B}^{\prime}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}\right]$ and with [PtMe 2 ($\left.\operatorname{cod}\right)$] it gave $\left[\mathrm{PtMe}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}\right]$. Treatment of $\left[\mathrm{PtCl}_{2}(\mathrm{NCMe})_{2}\right]$ with 2 equivalents of L^{3} gave trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\dagger}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}_{2}\right]$ which on heating gave the dicationic dichloride salt cis- $\left[\mathrm{Pt}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}_{2}\right] \mathrm{Cl}_{2}$. Successive treatments of this salt with 1 mole of sodium methoxide gave cis- $\left[\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\} \mathrm{P}\left\{\mathrm{PPh}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{Bu}^{\prime}\right) \mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}\right]^{+}$and cis$\left[\mathrm{Pt}\left\{\mathrm{PPh}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{Bu}^{\prime}\right) \mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}_{2}\right]$. Proton, ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\},{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ and infrared data have been obtained. Crystals of cis- $\left[\mathrm{Pt}\left\{\mathrm{P}^{2} \mathrm{Ph}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NN}_{2}\right\}_{2}\right]$ are monoclinic, space group $P 2_{1} / c$, with $a=1261.5(2), b=1794.6(3), c=1792.0(4) \mathrm{pm}$ and $Z=4$; final $R=0.0451$ for 4088 observed reflections.

In a previous paper we have described the synthesis of tertbutyl diphenylphosphinomethyl ketone dimethylhydrazone L^{1} by deprotonating tert-butyl methyl ketone dimethylhydrazone with n-butyllithium and treating the resultant carbanion with chloro(diphenyl)phosphine. ${ }^{1}$ We established that the configuration of this phosphine around the $\mathrm{C}=\mathrm{N}$ bond as Z since, when treated with $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ (nbd $=$ norbornadiene) under mild conditions $\left(20^{\circ} \mathrm{C}\right)$, it gave $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNMe}_{2}\right\}\right]$ the crystal structure of which was determined; ${ }^{1}$ this showed the presence of a sixmembered chelate ring, i.e. the configuration around the $\mathrm{C}=\mathrm{N}$ is Z. When heated strongly $\left(180^{\circ} \mathrm{C}\right)$ this six-membered chelate ring complex isomerised to the five-membered chelate ring complex with an E-configuration around $\mathrm{C}=\mathrm{N}$. We also showed that the phosphino dimethylhydrazone ($=\mathrm{NNMe}_{2}$) L^{1} underwent an exchange reaction with hydrazine in the presence of acetic acid as catalyst to give a phosphino hydrazone $\left(=\mathrm{NNH}_{2}\right)$ L^{2} which probably also had the Z-configuration; we also studied this phosphine as a ligand for chromium, molybdenum and tungsten carbonyls in the zero-valent state. It was of interest to study the behaviour of these hydrazone phosphines, L^{1} and L^{2}, as ligands towards some more electropositive and labile metals viz. platinum(II) and palladium(II) and in the present paper we describe the results of this study. For convenience the work is summarised in Scheme 1.

[^0]
Results and Discussion

We first attempted to prepare a chelate of L^{1} with platinum dichloride by treating the labile olefin complex $\left[\mathrm{PtCl}_{2}(\right.$ cod $\left.)\right]$ (cod $=$ cycloocta-1,5-diene) with 1 equivalent of the phosphino dimethylhydrazone L^{1} at $\mathrm{ca} .20^{\circ} \mathrm{C}$. This gave the hoped for chelate complex 1a in $c a .80 \%$ yield; preparative details and elemental analytical data for this and other new complexes are in the Experimental section, infrared and ${ }^{31} \mathrm{P}$ NMR data are in Table 1 and ${ }^{1} \mathrm{H}$ data are in Table 2. The complex showed a single resonance in its ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, with satellites due to platinum-195, and the large value of ${ }^{1} J(\mathrm{PtP})$ of 4126 Hz is consistent with a phosphorus trans to a chloride ligand. ${ }^{2}$ The infrared spectrum showed two strong bands, at 340 and $285 \mathrm{~cm}^{-1}$ for the cis- PtCl_{2} moiety ${ }^{3}$ due to $v(\mathrm{Pt}-\mathrm{Cl})$. The proton NMR data for the NMe_{2} methyls are consistent with the proposed structure for 1a, having a sixmembered chelate ring; the value of $J\left(\mathrm{PtNCH}_{3}\right)$ of 26.9 Hz is consistent with a three-bond coupling ${ }^{3,4}$ and too large for a four-bond coupling, which it would have to be if the chelate ring were five-membered. The carbon-13 data (see Experimental section) are also consistent with the assigned structure. In particular, the low δ_{C} value of $\delta 17.9$ for the methylene carbon is in agreement with the observed low δ_{C} value of $\delta 24.0$ for the sixmembered $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NNMe}_{2}\right\}\right]$ complex whereas the five-membered $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{N}\right.\right.$ $\left.\mathrm{NMe}_{2}\right\}$] complex has a higher δ_{C} value of $\delta 42.1$. In extensive studies of azine diphosphines acting as terdentates with metals such as $\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Pd}, \mathrm{Pt}$ and Ir, we have found that the methylene carbons in the six-membered rings give lower δ_{C}

3b

3a

Me
${ }^{2} \mathrm{H}$
(vi)

$\left[\mathrm{Pd}\left(\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\dagger}\right)=\mathrm{NNH}_{2}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$
5b

4 Scheme 1 (i) $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right],\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ or $\left[\mathrm{PtMe}_{2}(\operatorname{cod})\right]$; (ii) 1c or 1d with MeI; (iii) 0.5 equivalent $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right] ;($ iv $)\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right] ;$ (v) $\mathrm{NH}_{4} \mathrm{PF}_{6} ;($ vi $) \mathrm{NaOMe}$

Table 1 Infrared and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{a}$ data

Compound	$v(\mathrm{C}=\mathrm{N})^{\text {b }}$	$v(\mathrm{M}-\mathrm{Cl})^{c}$	$v(\mathrm{~N}-\mathrm{H})^{\text {c }}$	$\delta_{\text {P }}$
L^{1}	1610 m	-	-	-9.7
L^{2}	1640w	-	3330m, 3350w	-22.6
L^{3}	1585w	-	g	59.1
1a	1640 m	285m, 340m	-	16.5 (4126)
1b	1620 m	275w, 325w	-	43.2
1c	1610 m	-	-	$43.2{ }^{\text {d }}$ (2186)
1d	1630m	-	3100w, 3300m	$41.5^{\text {d }}$ (2199)
2a	1640w	-	-	$7.2^{\text {d }}$ (1217)
2b	1630 m	-	$3100 \mathrm{~m}, 3300 \mathrm{~m}$	$7.1^{\text {d }}$ (1215)
3a	1630m	-	3100 s, 3350w	$36.4{ }^{\text {e }}$ (3600)
3b	1630 m	-	3100 s, 3350w	$36.9{ }^{f}$ (3607)
4	1595s	-	g	$38.4{ }^{\text {h }}$ (3313)
5a	1630m	-	3130s, 3330w	$63.3{ }^{\text {e }}$
5b	1640m	-	3130s, 3330w	$64.1{ }^{\text {h }}$
6	1615m	-	-	-10.1
7a	1600s	280w, 340w	-	49.3
7 b	1600s	-	-	31.3 (2136)
8	1630m	340w	-	11.2 (2575)
9a	-	-	-	21.5^{e} (3412)
9 b	1620 m	--	-	$21.7^{\text {f }}$ (3361)
11	1595m	-	-	$21.9^{\text {d }}$ (3146)
$12 a^{i}$			-	$20.2^{\text {d }}$ (1703)
12b ${ }^{\text {i }}$			-	$9.06^{\text {d }}$ (1540)
$12 \mathrm{c}^{i}$			-	18.15 (1657)

${ }^{a}$ Recorded at 36.2 MHz , chemical shifts $\delta(\pm 0.1 \mathrm{ppm})$ relative to 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$, solvent CDCl_{3} unless otherwise stated, ${ }^{1} J(\mathrm{PtP}) / \mathrm{Hz}$ in parentheses. ${ }^{b}$ As compressed KBr disc. ${ }^{c}$ As Nujol mull between polythene plates. ${ }^{d}$ In $\mathrm{C}_{6} \mathrm{D}_{6}$. ${ }^{e}$ In ethanol with $\mathrm{C}_{6} \mathrm{D}_{6}$ as external reference. ${ }^{f}$ In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} .{ }^{g}$ Not observed. ${ }^{h}$ In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. ${ }^{i} v(\mathrm{C} \equiv \mathrm{O}) 2040$ cm^{1} in $\mathrm{C}_{6} \mathrm{H}_{6}$.
values ($\delta 20-25$) than the ones in five-membered chelate rings ($\delta 40-45$). ${ }^{5.6}$ Similarly, treatment of $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ with L^{1} gave the corresponding palladium dichloride chelate $\mathbf{1 b}$; characterising data are given in the Experimental section and in Tables 1 and 2. We prepared the chelate complex of PtMe_{2} with L^{1} i.e. $\left[\mathrm{PtMe}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNMe}_{2}\right\}\right]$ 1c by displacing cod from [$\left.\mathrm{PtMe}_{2}(\mathrm{cod})\right]$ under mild conditions ($\mathrm{ca} .20^{\circ} \mathrm{C}$). As would be expected, ${ }^{2}$ the value of ${ }^{1} J(\mathrm{PtP}), v i z .2186 \mathrm{~Hz}$ was much less than with the corresponding dichloride 1a. The proton NMR data (Table 2) are consistent with the assigned structure 1c, e.g. the NMe_{2} methyls are equivalent, $J(\mathrm{PtH})=15.9 \mathrm{~Hz}$, consistent with a three-bond coupling. ${ }^{3,4} \mathrm{We}$ also treated $\left[\mathrm{PtMe}_{2}(\mathrm{cod})\right]$ with the phosphino hydrazone L^{2} and obtained the corresponding dimethylplatinum complex 1d; the characterising data are consistent with a six-membered chelate ring, in particular, the values of ${ }^{2} J\left(P t \mathrm{~N} H_{2}\right)(29.3 \mathrm{~Hz})$ and ${ }^{3} J\left(P \mathrm{~N}_{2}\right)$ (6.1 Hz), excluded a five-membered ring chelate.

A characteristic reaction of complexes of the type $\left[\mathrm{PtMe}_{2}-\right.$ (phosphine) $)_{2}$] is the oxidative addition of methyl iodide to give platinum(Iv) adducts of the type $\left.\left[\mathrm{PtMe}_{3} \mathrm{I} \text { (phosphine) }\right)_{2}\right]^{4}$ and it was of interest to see whether the chelates 1c or 1d would react similarly. Treatment of $\mathbf{1 c}$ with an excess of iodomethane gave an adduct 2 a which was fully characterised. The small value of ${ }^{1} J(\mathrm{PtP})$ in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Table 1) is typical for platinum(IV$)^{2,7}$ and the occurrence of three chemically inequivalent platinum methyl resonances in the proton NMR spectrum indicated a fac- PtMe_{3} arrangement. It is known that in trimethylplatinum(Iv) complexes, methyl trans to iodine or nitrogen have ${ }^{2} J\left(P_{t} \mathrm{CH}_{3}\right)=c a .70 \mathrm{~Hz}^{8}$ and for methyl trans to phosphorus ${ }^{2} J\left(P t \mathrm{CH}_{3}\right)=c a .57 \mathrm{~Hz} .{ }^{4}$ The two N-methyls are not equivalent, chemically, excluding a five-membered chelate ring and the values of $J\left(\mathrm{PtNCH}_{3}\right)$ of 11.7 and 8.5 Hz are

Table 2 Proton NMR data ${ }^{a}$

Compound	$\delta\left(\mathrm{Bu}^{\prime}\right)$	$\delta\left(\mathrm{CH}_{2}\right)$	Others
L^{1}	1.12 (9 H, s)	$3.05\left[2 \mathrm{H}, \mathrm{d},{ }^{2} J(\mathrm{PH}) 2.9\right]$	2.10 ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$)
L^{2}	$0.98(9 \mathrm{H}, \mathrm{s})$	3.10 [$\left.2 \mathrm{H}, \mathrm{d},{ }^{2} J(\mathrm{PH}) 2.2\right]$	4.75 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}$)
L^{3}	1.22 (9 H, s)	3.52 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 3.2\right]$	8.04 (1 H, s, CHPh)
1 a	0.74 (9 H, s)	3.20 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 13.2,{ }^{3} J(\mathrm{PtH}) 45.4\right]$	$3.55\left[6 \mathrm{H}, \mathrm{s},{ }^{3} J(\mathrm{PtH}) 26.9, \mathrm{NMe}_{2}\right]$
1b	0.73 (9 H, s)	3.01 [$2 \mathrm{H}, \mathrm{d},{ }^{2} J(\mathrm{PH}) 13.9$]	3.41 ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$)
1c	0.63 (9 H, s)	2.80 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 10.3,{ }^{3} J(\mathrm{PtH}) 16.4\right]$	$\begin{aligned} & 1.10\left[3 \mathrm{H}, \mathrm{~d},{ }^{3} J(\mathrm{PH}) 8.0,{ }^{2} J(\mathrm{PtH}) 89.9, \mathrm{PtMe}\right] \\ & 1.28\left[3 \mathrm{H}, \mathrm{~d},{ }^{3} J(\mathrm{PH}) 7.8,{ }^{2} J(\mathrm{PtH}) 64.9, \mathrm{PtMe}\right] \end{aligned}$
			$2.94\left[6 \mathrm{H}, \mathrm{s}{ }^{3}{ }^{3}(\mathrm{PtH}) 15.9, \mathrm{NMe}_{2}\right]$
$1 d^{\text {b }}$	$0.64(9 \mathrm{H}, \mathrm{s})$	$2.65\left[2 \mathrm{H}, \mathrm{d},{ }^{2} J(\mathrm{PH}) 10.0,{ }^{3} J(\mathrm{PtH}) 17.6\right]$	1.20 [$3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 7.8,{ }^{2} J(\mathrm{PtH}) 67.4$, PtMe$]$
			$1.36\left[3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 7.1,{ }^{2} J(\mathrm{PtH}) 90.8\right.$, PtMe]
			$5.34\left[2 \mathrm{H}\right.$, br d, $\left.{ }^{3} J(\mathrm{PH}) 6.1,{ }^{2} J(\mathrm{PtH}) 29.3, \mathrm{NH}_{2}\right]$
$2 a^{\text {b }}$	0.70 (9 H, s)	$2.5(1 \mathrm{H})^{\text {c }}$	$1.09\left[3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 7.1,{ }^{2} J(\mathrm{PtH}) 75.7, \mathrm{PtMe}\right]$
		3.80 [1 H, dd, $\left.{ }^{2} J(\mathrm{PH}) 11.2,{ }^{2} J(\mathrm{HH}) 13.6\right]$	1.85 [3 H, d, ${ }^{3} J(\mathrm{PH}) 7.3,{ }^{2} J(\mathrm{PtH}) 78.1$, PtMe]
			1.95 [3 H, d, ${ }^{3} J(\mathrm{PH}) 7.6,{ }^{2} J(\mathrm{PtH}) 56.6$, PtMe]
			$2.51\left[3 \mathrm{H}, \mathrm{s},{ }^{3} \mathrm{~J}(\mathrm{PtH}) 11.7, \mathrm{NMe}_{2}\right]$
			3.17 [$\left.3 \mathrm{H}, \mathrm{s},{ }^{3} J(\mathrm{PtH}) 8.5, \mathrm{NMe}_{2}\right]$
$2 b^{\text {b }}$	$0.85(9 \mathrm{H}, \mathrm{s})$	3.19 [1 H, dd, $\left.{ }^{2} J(\mathrm{PH}) 9.7,{ }^{2} J(\mathrm{HH}) 13.9\right]$	1.42 [$3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 6.3,{ }^{2} J(\mathrm{PtH}) 70.3$, PtMe]
		$3.39\left[1 \mathrm{H}, \mathrm{dd},{ }^{2} J(\mathrm{PH}) 12.0,{ }^{2} J(\mathrm{HH}) 14.4\right]$	$1.95\left[3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 7.3,{ }^{2} J(\mathrm{PtH}) 73.7\right.$, PtMe]
			$2.03\left[3 \mathrm{H}, \mathrm{~d},{ }^{3} J(\mathrm{PH}) 8.5,{ }^{2} J(\mathrm{PtH}) 57.8, \mathrm{PtMe}\right]$
			$5.72\left[2 \mathrm{H}, \mathrm{br} \mathrm{~d},{ }^{3} J(\mathrm{PH}) 5.1,{ }^{2} J(\mathrm{PtH}) 20.0, \mathrm{NH}_{2}\right]$
$3 \mathbf{3 b}^{\text {d,e }}$	0.67 (18 H, s)	4.14 [4 H, br d, $\left.{ }^{2} J(\mathrm{PH}) 13.0,{ }^{3} J(\mathrm{PtH}) 45.0\right]$	
$4^{\text {e.f }}$	0.56 (18 H, s)	2.96 [4 H, d, $\left.{ }^{2} J(\mathrm{PH}) 12.2,{ }^{3} J(\mathrm{PtH}) 44.0\right]$	-
$5^{\text {b }}{ }^{\text {be }}$	0.65 (18 H, s)	3.92 (4 H, filled-in d, $N=13.2$)	-
$6{ }^{\text {b }}$	0.61 (18 H, s)	2.79 (4 H, vt, $N=11.0)$	-
7 a	0.87 (9 H, s)	2.66 [1 H, dd, $\left.{ }^{2} J(\mathrm{PH}) 11.5,{ }^{2} J(\mathrm{HH}) 13.0\right]$	$8.25\left[1 \mathrm{H}, \mathrm{d},{ }^{4} J(\mathrm{PH}) 1.7, \mathrm{CHPh}\right]$
		3.19 [1 H, dd, $\left.{ }^{2} J(\mathrm{PH}) 15.0,{ }^{2} J(\mathrm{HH}) 13.0\right]$	
$7 \mathbf{b}^{\text {b }}$	$0.79(9 \mathrm{H}, \mathrm{s})$	2.28 [1 H, dd, ${ }^{2} J(\mathrm{PH}) 10.7,{ }^{2} J(\mathrm{HH}) 12.6$,	1.23 [$\left.3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 7.8,{ }^{2} J(\mathrm{PtH}) 70.4, \mathrm{PtMe}\right]$
		$\left.{ }^{3} J(\mathrm{PtH}) 10.3\right]$	$1.53\left[3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 7.8,{ }^{2} J(\mathrm{PtH}) 89.4\right.$, PtMe]
		$3.11\left[1 \mathrm{H}, \mathrm{dd},{ }^{2} J(\mathrm{PH}) 10.7,{ }^{2} J(\mathrm{HH}) 12.6,\right.$ ${ }^{3} J(\mathrm{Pt} \mathrm{H}) 18.81$	8.40 [1 H, d, $\left.{ }^{4} J(\mathrm{PH}) 1.9,{ }^{3} J(\mathrm{PtH}) 37.0, \mathrm{C} H \mathrm{Ph}\right]$
8^{9}	$1.25(18 \mathrm{H}, \mathrm{s})$	4.43 [4 H, vt, $\left.N=9.2,{ }^{3} J(\mathrm{PtH}) 24.9\right]$	-
$9 \mathbf{b}^{\text {d,h }}$	1.18 (18 H, s)	4.71 [2 H, dd, $\left.{ }^{2} J(\mathrm{PH}) 15.4,{ }^{2} J(\mathrm{HH}) 19.3\right]$ $5.15\left[2 \mathrm{H}, \mathrm{dd},{ }^{2} J(\mathrm{PH}) 7.8,{ }^{2} J(\mathrm{HH}) 18.5\right]$	9.10 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}$)
$11^{\text {b }}$	$1.61(18 \mathrm{H}, \mathrm{s})$	-	4.42 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 8.8,{ }^{3} J(\mathrm{PtH}) 22.2, \mathrm{CHP}\right]$
			8.66 [2 H, d, $\left.{ }^{4} J(\mathrm{PH}) 2.0, \mathrm{CHPh}\right]$
$12 a^{\text {b }}$	1.12 (9 H, s)	$3.01\left[2 \mathrm{H}, \mathrm{d},{ }^{2} J(\mathrm{PH}) 10.7,{ }^{3} J(\mathrm{PtH}) 11.8\right]$	0.54 [$\left.3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 10.3,{ }^{2} J(\mathrm{PtH}) 69.6, \mathrm{PtMe}\right]$
			1.27 [$\left.3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 7.3,{ }^{2} J(\mathrm{PtH}) 74.4, \mathrm{PtMe}\right]$
			1.59 (6 H, s, NMe_{2})
$12 b^{\text {b }}$	0.88 (9 H, s)	$3.45\left[2 \mathrm{H}, \mathrm{d},{ }^{2} J(\mathrm{PH}) 11.2,{ }^{3} J(\mathrm{PtH}) 21.5\right]$	0.93 [$\left.3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 10.3,{ }^{2} J(\mathrm{PtH}) 70.1, \mathrm{PtMe}\right]$
			1.56 [3 H, d, $\left.{ }^{3} J(\mathrm{PH}) 7.3,{ }^{2} J(\mathrm{PtH}) 74.5, \mathrm{PtMe}\right]$
			5.54 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}$)
12c	1.18 (9 H, s)	4.07 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 11.5,{ }^{3} J(\mathrm{PtH}) 17.3\right]$	0.25 [$\left.3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 10.25,{ }^{2} J(\mathrm{PtH}) 69.6, \mathrm{PtMe}\right]$
			0.81 [$3 \mathrm{H}, \mathrm{d},{ }^{3} J(\mathrm{PH}) 7.3,{ }^{2} J(\mathrm{PtH}) 74.7$, PtMe]
			7.99 (1 H, s, CHPh)

${ }^{a}$ Recorded at 100 MHz , chemical shifts $\delta(\pm 0.01 \mathrm{ppm})$ relative to SiMe_{4}, solvent CDCl_{3} unless otherwise stated, coupling constants J in Hz ; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, vt $=$ virtual triplet and $\mathrm{br}=$ broad. ${ }^{b} \mathrm{In} \mathrm{C}_{6} \mathrm{D}_{6} .{ }^{c}$ Obscured by the NMe_{2} signal. ${ }^{d} \mathrm{In}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} .{ }^{e} \mathrm{NH}$ resonance not observed. ${ }^{r}$ In $\mathrm{CD}_{2} \mathrm{Cl}_{2} \cdot{ }^{g} \mathrm{CHPh}$ obscured by the aromatic protons. ${ }^{h}$ Recorded at $-50{ }^{\circ} \mathrm{C} . N={ }^{4} J(\mathrm{PH})+{ }^{2} J(\mathrm{PH})$.
consistent with a three-bond coupling in a platinum(Iv) complex. ${ }^{4}$

When we treated $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ with 1 equivalent of the phosphino hydrazone L^{2} in dichloromethane solution in an attempt to make the chelate $\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NN} H_{2}\right\}\right]$ we obtained a mixture of two platinum-phosphine complexes, the more intense resonances occurring at $\delta_{\mathrm{p}} 37.9$ with ${ }^{1} J(\mathrm{PtP})$ $=3796 \mathrm{~Hz}$ and the less intense at $\delta_{\mathbf{p}} 33.6$ with ${ }^{1} J(\mathrm{PtP})=$ 4143 Hz ; the proportions of the two complexes being ca. 3:1. Subsequently, when we treated $\left[\mathrm{PtCl}_{2}\right.$ (cod)] with 2 equivalents of L^{2} we produced the complex with $\delta_{\mathrm{P}} 37.9,{ }^{1} J(\mathrm{PtP}) 3796$ Hz , exclusively and identified it as the cis-bis(chelate) dication chloride salt 3a (see below). The minor product with $\delta_{\mathrm{P}} 33.6$, ${ }^{1} J(\mathrm{PtP})=4143 \mathrm{~Hz}$ was probably the chelate dichloride [$\left.\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNH}_{2}\right\}\right]$ but we were unable to isolate this pure or characterise it. When we treated $\left[\mathrm{PtCl}_{2}-\right.$ (cod)] with 2 equivalents of L^{2} in dichloromethane we prepared the bis(chelate) dication, isolated as its dichloride salt $\left[\mathrm{Pt}_{\{ }\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NNH}_{2}\right\}_{2}\right] \mathrm{Cl}_{2}$, 3a, characterised by elemental analysis (Experimental section) and ${ }^{31} \mathrm{P}$ NMR data
(Table 1). The dication was also isolated as the mixed chloride/
 $\mathrm{Cl}\left[\mathrm{PF}_{6}\right] \mathbf{3 b}$, which was similarly characterised; the large value of ${ }^{1} J(\mathrm{PtP})$ of 3607 Hz excludes the trans stereochemistry, but is consistent with phosphorus being trans to a more electronegative ligand such as nitrogen. ${ }^{9,10}$

We anticipated that the bis(chelate) dication should have NH_{2} groups which could be deprotonated with base. We therefore treated the dication dichloride salt 3a with 2 equivalents of sodium ethoxide in ethanol. This gave the hoped for neutral complex cis- $\left[\mathrm{Pt}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{t}\right) \mathrm{NNH}\right\}_{2}\right] 4$, the crystal structure of which was determined and is discussed below. This neutral complex was also characterised by elemental analysis and by its infrared spectrum for which the value of $v(C=N)$ of $1595 \mathrm{~cm}^{-1}$ was significantly less than the value for the free ligand or for the values for the complexes $\mathbf{1 - 3}$ (Table 1). The value of ${ }^{1} J(\mathrm{PtP})$ of 3313 Hz (Table 1) is in agreement with a cis geometry. The ${ }^{1} \mathrm{H}$ NMR data are also in agreement with the assigned structure for 4 although we could not observe the NH resonance which was presumably too broad

Scheme $2 \mathrm{R}=-\mathrm{N}=\mathrm{CHPh} .(i)\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ or $\left[\mathrm{PtMe}_{2}(\operatorname{cod})\right]$; (ii) $\left[\mathrm{PtCl}_{2}(\mathrm{NCMe})_{2}\right]$; (iii) reflux in ethanol for 4 h ; (iv) $\mathrm{NH}_{4} \mathrm{PF}_{6}$; (v) 1 mole equivalent of NaOMe
because of quadrupole relaxation or chemical exchange effects, or it might be obscured by the aromatic proton signals. ${ }^{10}$

Treatment of $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ with 2 equivalents of L^{2} gave the bis(chelate) dication cis-[$\mathrm{Pd}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{t}\right)=\mathrm{NN}\right.$ $\left.\left.\mathrm{H}_{2}\right\}_{2}\right]^{2+}$, isolated as the dichloride 5a, and the bis(hexafluorophosphate) $\mathbf{5 b}$, salts. The ${ }^{1} \mathrm{H}$ NMR pattern of the methylene hydrogens in both cases consisted of a second order or 'filled-in' doublet with $N={ }^{4} J(\mathrm{PH})+{ }^{2} J(\mathrm{PH})=13.2 \mathrm{~Hz}$. We tentatively assign these to have cis geometry. ${ }^{11,12}$ We also treated the dicationic dichloride salt $5 \mathbf{a}$ with 2 moles of sodium ethoxide in ethanol in order to effect deprotonation. An orange product was obtained, which appeared to be essentially pure from the phosphorus-31 and proton NMR spectra although it was too unstable to prepare a sample pure enough for elemental analysis. However, the phosphorus-31 NMR spectrum showed a singlet resonance at $\delta_{\mathbf{P}} 59.1$ and the proton NMR spectrum showed a well-defined 'virtual triplet' pattern for the CH_{2} protons with $N={ }^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH})=11.0 \mathrm{~Hz}$, suggesting that the phosphorus atoms were mutually trans. The fast atom bombardment (FAB) mass spectrum showed a parent molecular ion at $m / z=701$, in agreement with M^{+}.

We have prepared and described the crystalline mixed azine monophosphine $\mathrm{L}^{3},{ }^{1}$ formed by condensing benzaldehyde with the phosphino hydrazone, L^{2}. This azine monophosphine probably has the Z, E-configuration; for comparison purposes the infrared and NMR data are given in Tables 1 and 2. The coordination chemistry of this ligand has been summarised in Scheme 2. Treatment of trans- $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ with L^{3} in dichloromethane at $20^{\circ} \mathrm{C}$ gave the required chelated palladium dichloride complex 7a in over 90% yield. We formulate this as having a six-membered chelate ring, i.e. with the Z configuration around $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{N}-\mathrm{N}$ since it was formed under mild conditions and in the proton NMR spectrum
coupling between phosphorus and $=\mathrm{CHPh}$ was observed $\left.{ }^{4} J(\mathrm{PH})=1.7 \mathrm{~Hz}\right]$. The six-membered chelate ring structure is also supported by the carbon-13 NMR data (see Experimental section). We also prepared the dimethylplatinum complex with this ligand and formulate this with a six-membered chelate ring, as in $7 \mathbf{b}$; in this case the values of ${ }^{4} J(P \mathrm{CHPh})=1.9 \mathrm{~Hz}$ and ${ }^{3} J(P t \mathrm{CHPh})=37.0 \mathrm{~Hz}$ exclude the five-membered chelate ring.
Treatment of trans- $\left[\mathrm{PtCl}_{2}(\mathrm{NCMe})_{2}\right]$ with 2 equivalents of the mixed azine phosphine L^{3} at $20^{\circ} \mathrm{C}$ gave a bis(phosphine) complex which we formulate as the dichloride 8 with trans monodentate phosphines. Electric conductivity measurements in acetone solution showed this complex to be a non-electrolyte (specific molar conductivity, $\Lambda_{\mathrm{m}}=1.95 \times 10^{-2} \Omega^{-1} \mathrm{~mol}^{-1}$ cm^{2}). ${ }^{13}$ The coupling constant of phosphorus to platinum [${ }^{1} J(\mathrm{PtP})=2575 \mathrm{~Hz}$] is typical of mutually trans phosphines co-ordinated to platinum(II). ${ }^{2}$ Additionally, in the proton NMR spectrum, the CH_{2} protons gave a virtual triplet with $N={ }^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH})=9.2 \mathrm{~Hz}$, with satellites due to platinum-195 coupling, ${ }^{3} J\left(\mathrm{PtCH}_{2}\right)=24.9 \mathrm{~Hz}$, typical of mutually trans phosphines. ${ }^{12}$
When trans- $\left[\mathrm{PtCl}_{2}(\mathrm{NCMe})_{2}\right]$ was heated with 2 equivalents of L^{3} in ethanol-dichloromethane for 4 h , the hoped for dichloro salt 9a was formed (Table 1), and was isolated as the bis(hexafluorophosphate) salt 9b. Electric conductivity measurements in acetone solution showed this complex to be a 2: 1 electrolyte (specific molar conductivity, $\Lambda_{\mathrm{m}}=0.2 \Omega^{-1} \mathrm{~mol}^{-1}$ cm^{2}). ${ }^{13}$ The coupling constant of phosphorus to platinum-195 of 3361 Hz is consistent with the phosphorus atoms being coordinated mutually cis and is much too high for mutually trans co-ordination. ${ }^{2,9}$ We found that at $c a .20^{\circ} \mathrm{C}$ the resonance of the methylene protons $\left(\mathrm{CH}_{2} \mathrm{P}\right)$ of 9 b was broad, and at $-50^{\circ} \mathrm{C}$, an ABX pattern was observed but coupling to platinum was not
resolved. The broadness was possibly due to exchange or a fluxional process. When we treated a methanol solution of 9 a with 1 mole equivalent of sodium methoxide a product was formed which showed an AB phosphorus pattern with satellites $\left[\delta\left(\mathrm{P}_{\mathrm{A}}\right)\right.$ 17.2, ${ }^{1} J\left(\mathrm{PtP}_{\mathrm{A}}\right)=3363$ and $\delta\left(\mathrm{P}_{\mathrm{B}}\right) 31.5,{ }^{1} J\left(\mathrm{PtP}_{\mathrm{B}}\right)=$ $3363,{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)=11 \mathrm{~Hz}$, which we suggest was due to the monodeprotonated complex 10. When we treated 10 with 1 mole equivalent of sodium methoxide we obtained the orange neutral complex cis- $\left[\mathrm{Pt}\left\{\mathrm{PPh}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{Bu}^{\prime}\right) \mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}_{2}\right] 11$ with $\delta_{\mathrm{P}} 21.9$ and ${ }^{1} J(\mathrm{PtP})=3146 \mathrm{~Hz}$ was obtained. In the proton NMR spectrum of 11, the methine proton showed a doublet at $\delta_{\mathrm{H}} 4.42,{ }^{2} J(\mathrm{PH})=8.8 \mathrm{~Hz}$, with satellites, ${ }^{3} J(\mathrm{PtH})$ $=22.2 \mathrm{~Hz}$ (Table 2). As expected complex 11 was found to be a non-electrolyte in acetone (specific molar conductivity, $\Lambda_{m}=$ $6.1 \times 10^{-3} \Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$). ${ }^{13}$

We have also studied the action of carbon monoxide on the three dimethylplatinum complexes 1c, 1d and 7b (Scheme 3). When carbon monoxide was bubbled through a solution of $1 \mathbf{c}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $20^{\circ} \mathrm{C}$ the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum due to 1 c disappeared and was replaced by a singlet with satellites, δ_{P} $20.2,{ }^{1} J(\mathrm{PtP})=1703 \mathrm{~Hz}$. Moreover, the solution showed a strong infrared absorption at $2040 \mathrm{~cm}^{-1}$ typical of carbon monoxide co-ordinated to platinum(II). ${ }^{14}$ The product proved to be too soluble to isolate but was further characterised by its proton NMR spectrum (Table 2). We formulate the complex as 12a with the ligand L^{1} being monodentate through phosphorus. The other two chelates $\mathbf{1 d}$ and $\mathbf{7 b}$ reacted similarly and were similarly characterised as $\mathbf{1 2 b}$ and $\mathbf{1 2 c}$, respectively, data in Tables 1 and 2.

L
12a L^{1}
12b L^{2}
12c L^{3}
Scheme 3

Crystal Structure of cis $-\left[\mathrm{Pt}^{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNH}\right\}_{2}\right]$ 4.The crystal structure of complex 4 is shown in Fig. 1, with selected bond lengths and angles in Table 3 and atom coordinates in Table 4. As can be seen from the figure and Table 3, the arrangement around the platinum is strictly planar, the phosphorus atoms are cis to each other as are the nitrogens and the six-membered chelate rings are puckered. The bond lengths and angles are not unusual.

Experimental

All the reactions were carried out in an inert atmosphere of dry nitrogen or dry argon. Infrared spectra were recorded using a Perkin-Elmer model 457 grating spectrometer. NMR spectra were recorded using a JEOL FX-90Q spectrometer (operating frequencies for ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ of 89.5 and 36.2 MHz , respectively), a JEOL FX-100 spectrometer (operating frequencies for ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ of 99.5 and 40.25 MHz , respectively) or a Bruker AM400 spectrometer (operating frequencies for ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ of $400.13,161.9$ and 100.6 MHz , respectively; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are relative to tetramethylsilane and ${ }^{31} \mathrm{P}$ shifts are

Table 3 Selected bond lengths (pm) and angles $\left({ }^{\circ}\right)$ for complex 4 with estimated standard deviations (e.s.d.s) in parentheses

$\mathrm{P}(1)-\mathrm{Pt}$	$224.2(4)$	$\mathrm{P}(6)-\mathrm{Pt}$	$223.4(5)$
$\mathrm{N}(5)-\mathrm{Pt}$	$207.8(10)$	$\mathrm{N}(10)-\mathrm{Pt}$	$206.3(11)$
$\mathrm{C}(2)-\mathrm{P}(1)$	$183.1(11)$	$\mathrm{C}(7)-\mathrm{P}(6)$	$184.7(11)$
$\mathrm{C}(3)-\mathrm{C}(2)$	$150.1(16)$	$\mathrm{C}(8)-\mathrm{C}(7)$	$150.1(16)$
$\mathrm{C}(31)-\mathrm{C}(3)$	$154.7(15)$	$\mathrm{C}(81)-\mathrm{C}(8)$	$151.3(16)$
$\mathrm{N}(4)-\mathrm{C}(3)$	$129.7(13)$	$\mathrm{N}(9)-\mathrm{C}(8)$	$128.0(14)$
$\mathrm{N}(5)-\mathrm{N}(4)$	$139.0(12)$	$\mathrm{N}(10)-\mathrm{N}(9)$	$140.7(12)$
$\mathrm{P}(6)-\mathrm{Pt}-\mathrm{P}(1)$	$100.2(2)$	$\mathrm{N}(10)-\mathrm{Pt}-\mathrm{N}(5)$	$81.8(4)$
$\mathrm{N}(5)-\mathrm{Pt}-\mathrm{P}(1)$	$89.0(4)$	$\mathrm{N}(10)-\mathrm{Pt}-\mathrm{P}(6)$	$89.2(3)$
$\mathrm{N}(10)-\mathrm{Pt}-\mathrm{P}(1)$	$170.2(3)$	$\mathrm{P}(6)-\mathrm{Pt}-\mathrm{N}(5)$	$170.1(3)$
$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{Pt}$	$106.3(4)$	$\mathrm{C}(7)-\mathrm{P}(6)-\mathrm{Pt}$	$107.8(4)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{P}(1)$	$113.0(7)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{P}(6)$	$113.3(8)$
$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.3(10)$	$\mathrm{N}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$123.4(10)$
$\mathrm{N}(5)-\mathrm{N}(4)-\mathrm{C}(3)$	$119.7(10)$	$\mathrm{N}(10)-\mathrm{N}(9)-\mathrm{C}(8)$	$119.7(10)$
$\mathrm{N}(4)-\mathrm{N}(5)-\mathrm{Pt}$	$125.0(8)$	$\mathrm{N}(9)-\mathrm{N}(10)-\mathrm{Pt}$	$125.7(7)$

Fig. 1 Crystal structure of $c i s-\left[\mathrm{Pt}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNH}\right\}_{2}\right] 4$

Table 4 Fractional non-hydrogen atomic coordinates $\left(\times 10^{4}\right)$ for compound 4 with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
Pt	$663.3(3)$	$444.0(2)$	$2018.0(2)$	$\mathrm{C}(611)$	$2695(4)$	$1750(3)$	$1966(3)$
$\mathrm{P}(1)$	$233(2)$	$1196(1)$	$2850(2)$	$\mathrm{C}(612)$	$3069(4)$	$2333(3)$	$1622(3)$
$\mathrm{C}(111)$	$1410(5)$	$1794(3)$	$3539(4)$	$\mathrm{C}(613)$	$4178(4)$	$2644(3)$	$2058(3)$
$\mathrm{C}(112)$	$1475(5)$	$2534(3)$	$3322(4)$	$\mathrm{C}(614)$	$4913(4)$	$2373(3)$	$2840(3)$
$\mathrm{C}(113)$	$2452(5)$	$2966(3)$	$3798(4)$	$\mathrm{C}(615)$	$4538(4)$	$1791(3)$	$3184(3)$
$\mathrm{C}(114)$	$3363(5)$	$2658(3)$	$4490(4)$	$\mathrm{C}(616)$	$3429(4)$	$1479(3)$	$2747(3)$
$\mathrm{C}(115)$	$3297(5)$	$1918(3)$	$4707(4)$	$\mathrm{C}(621)$	$263(5)$	$2021(3)$	$836(3)$
$\mathrm{C}(116)$	$2321(5)$	$1487(3)$	$4232(4)$	$\mathrm{C}(622)$	$361(5)$	$2733(3)$	$1173(3)$
$\mathrm{C}(121)$	$-1037(4)$	$1803(3)$	$2397(3)$	$\mathrm{C}(623)$	$-527(5)$	$3256(3)$	$793(3)$
$\mathrm{C}(122)$	$-1302(4)$	$2349(3)$	$2845(3)$	$\mathrm{C}(624)$	$-1512(5)$	$3067(3)$	$76(3)$
$\mathrm{C}(123)$	$-2357(4)$	$2739(3)$	$2481(3)$	$\mathrm{C}(625)$	$-1610(5)$	$2356(3)$	$-262(3)$
$\mathrm{C}(124)$	$-3147(4)$	$2584(3)$	$1670(3)$	$\mathrm{C}(626)$	$-723(5)$	$1833(3)$	$119(3)$
$\mathrm{C}(125)$	$-2882(4)$	$2037(3)$	$1222(3)$	$\mathrm{C}(7)$	$1542(9)$	$794(6)$	$560(6)$
$\mathrm{C}(126)$	$-1827(4)$	$1647(3)$	$1586(3)$	$\mathrm{C}(8)$	$2289(9)$	$109(6)$	$856(6)$
$\mathrm{C}(2)$	$-106(9)$	$585(6)$	$3538(6)$	$\mathrm{C}(81)$	$3331(10)$	$23(6)$	$654(7)$
$\mathrm{C}(3)$	$-1074(9)$	$44(5)$	$3081(6)$	$\mathrm{C}(82)$	$4273(9)$	$645(6)$	$1124(7)$
$\mathrm{C}(31)$	$-2163(8)$	$9(5)$	$3267(5)$	$\mathrm{C}(83)$	$3932(11)$	$-748(7)$	$934(8)$
$\mathrm{C}(32)$	$-2717(10)$	$757(6)$	$3194(8)$	$\mathrm{C}(84)$	$2926(11)$	$125(7)$	$-281(7)$
$\mathrm{C}(33)$	$-1759(10)$	$-224(7)$	$4166(6)$	$\mathrm{N}(9)$	$2055(7)$	$-427(5)$	$1233(5)$
$\mathrm{C}(34)$	$-3018(10)$	$-575(6)$	$2697(8)$	$\mathrm{N}(10)$	$1049(7)$	$-391(5)$	$1383(5)$
$\mathrm{N}(4)$	$-985(7)$	$-437(5)$	$2569(5)$	$\mathrm{C}(1 \mathrm{~S})$	$6874(13)$	$4494(8)$	$1364(9)$
$\mathrm{N}(5)$	$22(8)$	$-451(5)$	$2435(6)$	$\mathrm{C}(1 S)$	$5663(4)$	$4476(2)$	$1619(3)$
$\mathrm{P}(6)$	$1309(2)$	$1282(1)$	$1385(2)$	$\mathrm{C}(2 S)$	$6399(5)$	$4439(3)$	$296(3)$

relative to 85% phosphoric acid. Mass spectra were recorded on an VG Autospec mass spectrometer with 8 kV acceleration.
The ligands $\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNR}_{2}\left(\mathrm{R}=\mathrm{Me} \mathrm{L}^{1}\right.$ or $\left.\mathrm{H} \mathrm{L}^{2}\right)$ and $\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CHPh} \mathrm{L}^{3}$ were prepared according to our published procedure. ${ }^{1}{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100.6 \mathrm{MHz}$, CDCl_{3}): $\mathrm{L}^{1} \delta_{\mathrm{c}} 177.1(1 \mathrm{C}, \mathrm{s}, \mathrm{C}=\mathrm{N}), 141.6\left[2 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 16.9\right.$, $\mathrm{C}_{\text {ipso }}$], 132.4 [4 C, d, ${ }^{2} J(\mathrm{PC}) 20.1, \mathrm{C}_{\text {ortho }}$], 128.1 [4 C, d, ${ }^{3} J(\mathrm{PC})$ $7.0, \mathrm{C}_{\text {meta }}$], 128.1 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C}_{\text {para }}$), 45.8 ($2 \mathrm{C}, \mathrm{s}, \mathrm{NMe}_{2}$), 38.4 ($1 \mathrm{C}, \mathrm{s}$, $C \mathrm{Me}_{3}$), $29.0\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 21.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$] and $28.3(3 \mathrm{C}, \mathrm{s}$, CMe_{3}); $\mathrm{L}^{2} \delta_{\mathrm{c}} 156.6(1 \mathrm{C}, \mathrm{s}, \mathrm{C}=\mathrm{N})$, 137.6 [2 C, d, ${ }^{1} J(\mathrm{PC}) 14.9$, $\mathrm{C}_{i p s o}$], 132.8 [$4 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC}) 19.7, \mathrm{C}_{\text {ortho }}$], 129.0 (2 C, s, $\mathrm{C}_{\text {para }}$), 128.5 [$4 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 7.0, \mathrm{C}_{\text {meta }}$], 38.1 [1 C, d, ${ }^{3} J(\mathrm{PC})$ $1.4, C \mathrm{Me}_{3}$], $28.6\left(3 \mathrm{C}, \mathrm{s}, \mathrm{CMe}{ }_{3}\right.$) and 26.2 [$1 \mathrm{C}, \mathrm{d},{ }^{1} \mathrm{~J}(\mathrm{PC}) 22.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right] ; \mathrm{L}^{3} \delta_{\mathrm{C}} 175.6$ [1 C, d, $\left.{ }^{2} J(\mathrm{PC}) 4.4, \mathrm{Bu}^{\mathrm{t}} \mathrm{C}=\mathrm{N}\right], 157.3[1 \mathrm{C}$, $\left.\mathrm{d},{ }^{5} J(\mathrm{PC}) 1.6, \mathrm{HC}=\mathrm{N}\right], 139.1\left[2 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 17.3, \mathrm{C}_{\text {ipsol }}\right], 134.6[1$ C, s, C^{1} of CHPh], 133.0 [4 C, d, ${ }^{2} J(\mathrm{PC}) 20.4, \mathrm{C}_{\text {ortho }}$], 131.4 (1 C, $\mathrm{s}, \mathrm{CH} P h), 131.3(1 \mathrm{C}, \mathrm{s}, \mathrm{CH} P h), 130.8(1 \mathrm{C}, \mathrm{s}, \mathrm{CH} P h$), $130.7(1 \mathrm{C}$, $\mathrm{s}, \mathrm{CH} P h$), 130.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C}^{4}$ of CHPh), 128.6 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C}_{\text {para }}$), 128.3 [4 C, d, $\left.{ }^{3} J(\mathrm{PC}) 6.7, \mathrm{C}_{\text {meta }}\right], 38.7\left(1 \mathrm{C}, \mathrm{s}, \mathrm{CMe}_{3}\right), 28.9[1 \mathrm{C}, \mathrm{d}$, $\left.{ }^{1} J(\mathrm{PC}) 22.5, \mathrm{CH}_{2}\right]$ and $28.1\left[3 \mathrm{C}, \mathrm{d},{ }^{4} J(\mathrm{PC}) 1.9 \mathrm{~Hz}, \mathrm{CMe}_{3}\right]$.

Preparations of Complexes. $-\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NN}\right.\right.$ $\left.\left.\mathrm{Me}_{2}\right\}\right]$ 1a. A solution of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right](60 \mathrm{mg}, 0.16 \mathrm{mmol})$ and the phosphino dimethylhydrazone $\mathrm{L}^{1}(53 \mathrm{mg}, 0.16 \mathrm{mmol})$ in dichloromethane ($1.5 \mathrm{~cm}^{3}$) was put aside for 1 h at $c a .20^{\circ} \mathrm{C}$. The solvent was then removed under reduced pressure and methanol added to the residue gave the required product la as a pale yellow microcrystalline solid. Yield $74 \mathrm{mg}, 78 \%$ (Found: $\mathrm{C}, 39.55 ; \mathrm{H}, 4.5 ; \mathrm{N}, 4.5 . \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{PPt} \cdot 0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, $39.65 ; \mathrm{H}, 4.5 ; \mathrm{N}, 4.55 \%$). ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (25.2 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 170.1(1 \mathrm{C}, \mathrm{s}, \mathrm{C}=\mathrm{N}), 134.2\left[4 \mathrm{C}, \mathrm{d},{ }^{2} \mathrm{~J}(\mathrm{PC}) 10.8\right.$, $\left.{ }^{3} J(\mathrm{PtC}) 22, \mathrm{C}_{\text {ortho }}\right], 132.5$ [2 C, d, ${ }^{4} J(\mathrm{PC}) 2.7, \mathrm{C}_{\text {para }}$], 128.8 [4 C, $\left.\mathrm{d},{ }^{3} J(\mathrm{PC}) 11.8, \mathrm{C}_{\text {meta }}\right], 126.8\left[2 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 60.5, \mathrm{C}_{\text {ipsos }}\right], 55.6[2$ $\left.\mathrm{C}, \mathrm{s},{ }^{2} J(\mathrm{PtC}) 14.7, \mathrm{NMe}_{2}\right], 40.9$ [1 C, d, $\left.{ }^{3} J(\mathrm{PC}) 1.7, C \mathrm{Ce}_{3}\right], 26.9$ $\left(3 \mathrm{C}, \mathrm{s}, \mathrm{CMe} 3\right.$) and $17.9\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 24.0,{ }^{2} J(\mathrm{PtC}) 6.6 \mathrm{~Hz}\right.$, CH_{2}].

The dichloropalladium analogue 1b was prepared similarly from $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right]$ and L^{1} in 89% yield (Found: C, 46.65 ; $\mathrm{H}, 5.3 ; \mathrm{Cl}, 15.55 ; \mathrm{N}, 5.55 . \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{PPd} \cdot 0.15 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 46.85 ; \mathrm{H}, 5.3 ; \mathrm{Cl}, 15.8 ; \mathrm{N}, 5.4 \%$).
$\left[\mathrm{PtMe}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNMe}_{2}\right\}\right]$ 1c. A solution of $[\mathrm{Pt}-$ $\left.\mathrm{Me}_{2}(\operatorname{cod})\right](50 \mathrm{mg}, 0.15 \mathrm{mmol})$ and the phosphino dimethylhydrazone L^{1} ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) in benzene ($3 \mathrm{~cm}^{3}$) was put
aside for 1 h . The dimethylplatinum complex 1c crystallized out as a white solid after 1 h and was collected. Yield: $45 \mathrm{mg}, 55 \%$. (Found: C, $47.75 ; \mathrm{H}, 6.2 ; \mathrm{N}, 5.0 . \mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{PPt}$ requires C , 47.90; H, 6.0; N, 5.1\%).

The dimethylplatinum complex $1 \mathbf{d}$ was prepared in a similar manner from equimolar amounts of the phosphino hydrazone L^{2} and $\left[\mathrm{PtMe}_{2}(\operatorname{cod})\right]$. Yield 40% (Found: C, $46.05 ; \mathrm{H}, 5.55 ; \mathrm{N}$, $5.35 . \mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{PPt}$ requires $\mathrm{C}, 45.9 ; \mathrm{H}, 5.60 ; \mathrm{N}, 5.35 \%$). ${ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{C}} 169.5(1 \mathrm{C}, \mathrm{s}, \mathrm{C}=\mathrm{N}), 134.1[4$ C, d, $\left.{ }^{2} J(\mathrm{PC}) 12.0, \mathrm{C}_{\text {ortho }}\right], 133.1$ [2 C, d, ${ }^{1} J(\mathrm{PC}) 39.0, \mathrm{C}_{\text {ipso }}$], 130.1 $\left[2 \mathrm{C}, \mathrm{d},{ }^{4} J(\mathrm{PC}) 1.8, \mathrm{C}_{\text {para }}\right], 128.3\left[4 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 7.2, \mathrm{C}_{\text {meta }}\right], 53.0$ (2 C, s, NMe_{2}), 40.7 [1 C, d, $\left.{ }^{2} J(\mathrm{PC}) 2.3, C \mathrm{Me}_{3}\right], 27.8(3 \mathrm{C}, \mathrm{s}$, $\left.\mathrm{C}_{\mathrm{C}} \mathrm{e}_{3}\right), 21.3\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 16.7, \mathrm{CH}_{2}\right], 16.0\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC})\right.$ 117.7, PtMe trans to P] and -21.9 [1 C, d, ${ }^{1} J(\mathrm{PC}) 3.9 \mathrm{~Hz}$, $\mathrm{Pt} M e, c i s$ to P$]$.
[$\left.\mathrm{PtMe}_{3} \mathrm{I}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NNMe}_{2}\right\}\right]$ 2a. An excess of iodomethane ($0.1 \mathrm{~cm}^{3}$) was added to a solution of the dimethylplatinum complex 1c ($38 \mathrm{mg}, 0.07 \mathrm{mmol}$) in benzene $\left(1.0 \mathrm{~cm}^{3}\right)$. The solvent was then removed, trituration of the resultant yellow oil with methanol gave the required complex 2a as a white microcrystalline solid. Yield: $37 \mathrm{mg}, 77 \%$ (Found: $\mathrm{C}, 40.4 ; \mathrm{H}, 5.25 ; \mathrm{N}, 4.05 . \mathrm{C}_{23} \mathrm{H}_{36} \mathrm{IN}_{2} \mathrm{PPt} \cdot 0.1 \mathrm{C}_{6} \mathrm{H}_{6}$ requires C , 40.4; H, 5.25; N, 4.0\%).
[$\left.\mathrm{PtMe}_{3} \mathrm{I}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NN}_{2}\right\}\right]$ 2b. Iodomethane (0.5 cm^{3}) was added to a solution of the dimethylplatinum complex $1 \mathrm{~d}(80 \mathrm{mg}, 0.15 \mathrm{mmol})$ in benzene ($2 \mathrm{~cm}^{3}$). The reaction mixture was put aside for 1.5 h , filtered, and the solvent was removed under reduced pressure. Addition of methanol to the residue gave the required complex $\mathbf{2 b}$ as colourless prisms ($71 \mathrm{mg}, 70 \%$) (Found: C, 38.3; H, 4.85; N, 4.35. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{IN}_{2} \mathrm{PPt}$ requires C , 37.9; H, 4.85; N, 4.20\%).
cis- $-\left[\mathrm{Pt}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{r}}\right)=\mathrm{NNH}_{2}\right\}_{2}\right] \mathrm{Cl}_{2}$ 3a. The complex $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](125 \mathrm{mg}, 0.33 \mathrm{mmol})$ was added to a stirred solution of the phosphino hydrazone $\mathrm{L}^{2}(200 \mathrm{mg}, 0.67 \mathrm{mmol})$ in dichloromethane. After 30 min , the required product 3a was formed in the reaction mixture as a white solid. This was filtered off, and washed with dichloromethane. Yield: $200 \mathrm{mg}, 70 \%$ (Found: C, $48.9 ; \mathrm{H}, 5.6 ; \mathrm{N}, 6.15 . \mathrm{C}_{36} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pt} \cdot 0.35 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 48.9 ; \mathrm{H}, 5.3 ; \mathrm{N}, 6.25 \%$).
cis $-\left[\mathrm{Pt}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNH}_{2}\right\}_{2}\right] \mathrm{Cl}\left[\mathrm{PF}_{6}\right]$ 3b. This complex was prepared by addition of a solution of ammonium hexafluorophosphate(v) in methanol to 3a in methanol in 64% yield (Found: C, 43.85; H, 4.9; Cl, 4.15; N, 5.55. $\mathrm{C}_{36} \mathrm{H}_{46}{ }^{-}$
$\mathrm{ClF}_{6} \mathrm{~N}_{4} \mathrm{P}_{3} \mathrm{Pt} \cdot 0.15 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 44.05 ; \mathrm{H}, 4.8 ; \mathrm{Cl}, 4.65 ; \mathrm{N}$, 5.7%).
cis- $\left[\mathrm{Pt}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNH}\right\}_{2}\right]$ 4. The complex $\left[\mathrm{PtCl}_{2}-\right.$ (cod)] $(120 \mathrm{mg}, 0.32 \mathrm{mmol})$ was added to the phosphino hydrazone $L^{2}(200 \mathrm{mg}, 0.67 \mathrm{mmol})$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$. A white solid was obtained which was filtered off, dried and then dissolved in hot ethanol ($4 \mathrm{~cm}^{3}$). Sodium ethoxide solution $\left(1.2 \mathrm{~cm}^{3}, 0.48 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in ethanol, 0.58 mmol) was added. After 1.5 h , the solvent was reduced to a low volume under reduced pressure. The required product 4 was obtained as a pale yellow solid. Yield $205 \mathrm{mg}, 81 \%$ (Found: C, $54.55 ; \mathrm{H}, 5.65 ; \mathrm{N}, 7.05$. $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pt}$ requires $\mathrm{C}, 54.75 ; \mathrm{H}, 5.65 ; \mathrm{N}, 7.10 \%$).
$\left[\mathrm{Pd}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{l}}\right)=\mathrm{NNH}_{2}\right\}_{2}\right] \mathrm{Cl}_{2}$ 5a. A mixture of the phosphino hydrazone $\mathrm{L}^{2}(200 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\left[\mathrm{PdCl}_{2}-\right.$ $\left.(\mathrm{NCPh})_{2}\right](95 \mathrm{mg}, 0.25 \mathrm{mmol})$ in dichloromethane $\left(3 \mathrm{~cm}^{3}\right)$ was put aside at room temperature for 1 h . Complex 5a was obtained as a white solid, which was filtered off and washed with a little dichloromethane. Yield $183 \mathrm{mg}, 95 \%$ (Found: C, $52.65 ; \mathrm{H}, 6.0 ; \mathrm{N}, 7.05 . \mathrm{C}_{36} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pd} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, $52.70 ; \mathrm{H}, 5.7 ; \mathrm{N}, 7.0 \%)$.
$\left[\mathrm{Pd}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNH}_{2}\right\}_{2}\right][\mathrm{PF}]_{2} \mathbf{5 b}$. Complex 5b was prepared by the addition of a methanolic solution of ammonium hexafluorophosphate(v) to a solution of 5a in hot methanol. The required salt was obtained as a pale yellow solid in 60% yield (Found: $\mathrm{C}, 44.0 ; \mathrm{H}, 4.8 ; \mathrm{N}, 6.05 . \mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{Pd}$ requires $\mathrm{C}, 43.6 ; \mathrm{H}, 4.7 ; \mathrm{N}, 5.65 \%$).
trans $-\left[\mathrm{Pd}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{l}}\right)=\mathrm{NNH}\right\}_{2}\right]$ 6. A solution of the palladium salt $5 \mathbf{a}(80 \mathrm{mg}, 0.20 \mathrm{mmol})$ in ethanol $\left(1.5 \mathrm{~cm}^{3}\right)$ was treated with a solution of sodium ethoxide $\left(0.48 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in ethanol, $0.45 \mathrm{~cm}^{3}, 0.21 \mathrm{mmol}$) to give the required compound 6 as an orange solid. Yield $80 \mathrm{mg}, 57 \% ; m / z 701\left(M^{+}\right)$. The complex decomposed on attempted recrystallization.
[$\left.\mathrm{PdCl}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}\right]$ 7a. A solution of the azine monophosphine $\mathrm{L}^{3}(60 \mathrm{mg}, 0.16 \mathrm{mmol})$ and $\left[\mathrm{PdCl}_{2}(\mathrm{NCPh})_{2}\right](59 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dichloromethane was put aside for 30 min . The solvent was then removed under reduced pressure and methanol added to the residue; this gave the required palladium complex 7a as a yellow microcrystalline solid. Yield $79 \mathrm{mg}, 91 \%$ (Found: C, $50.7 ; \mathrm{H}, 4.75 ; \mathrm{N}, 5.05$. $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~N}_{2} \mathrm{PPd} \cdot 1.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 50.5 ; \mathrm{H}, 4.7 ; \mathrm{N}$, $4.6 \%) .{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 175.8(1 \mathrm{C}, \mathrm{s}$, $\left.\mathrm{Bu}^{\prime} \mathrm{C}=\mathrm{N}\right), 162.8\left[1 \mathrm{C},{ }^{3} J(\mathrm{PC}) 3.3, \mathrm{HC}=\mathrm{N}\right], 134.8\left[2 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC})\right.$ $\left.12.1, \mathrm{C}_{\text {ortho }}\right], 133.8\left(1 \mathrm{C}, \mathrm{s}, \mathrm{C}_{\text {para }}\right), 133.4$ [2 C, d, ${ }^{1} J(\mathrm{PC}) 57.8$, $\mathrm{C}_{\text {ipso }}$], $132.7(1 \mathrm{C}, \mathrm{s}, \mathrm{CH} P h), 132.7(1 \mathrm{C}, \mathrm{s}, \mathrm{CH} P h), 132.6(1 \mathrm{C}, \mathrm{s}$, СНPh), $132.5(1 \mathrm{C}, \mathrm{s}, \mathrm{CH} P h), 132.3$ [2 C, d, $\left.{ }^{2} J(\mathrm{PC}) 9.9, \mathrm{C}_{\text {ortho }}\right]$, 131.3 (1 C, s, $\mathrm{C}_{\text {para }}$), 129.9 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C}^{4}$ of CHPh), 129.4 [2 C, d, ${ }^{3} J(\mathrm{PC}) 11.2, \mathrm{C}_{\text {meta }}$], 128.9 [2 C, d, $\left.{ }^{3} J(\mathrm{PC}) 10.2, \mathrm{C}_{\text {meta }}\right], 128.8(1$ $\mathrm{C}, \mathrm{s}, \mathrm{CH} P h), 39.3\left[1 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 1.9, C \mathrm{Me}_{3}\right], 27.0(3 \mathrm{C}, \mathrm{s}$, CMe_{3}) and $25.2\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 25.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right]\left(\mathrm{C}^{1}\right.$ of CHPh was obscured).
[$\left.\mathrm{PtMe}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}\right] 7$ 7b.-A solution of the azine monophosphine $L^{3}(120 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $\left[\mathrm{PtMe}_{2}(\operatorname{cod})\right](100 \mathrm{mg}, 0.30 \mathrm{mmol})$ in degassed benzene $\left(2 \mathrm{~cm}^{3}\right)$ was put aside for 2 h . The solvent was then removed under reduced pressure and methanol added to the residue to give the required compound $\mathbf{7 b}$ as a yellow solid. Yield $130 \mathrm{mg}, 71 \%$ (Found: C, 51.85; H, 5.7; N, 4.25. $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{PPt} \cdot 1.5 \mathrm{CH}_{3} \mathrm{OH}$ requires $\mathrm{C}, 51.9 ; \mathrm{H}, 5.95 ; \mathrm{N}, 4.25 \%$).
trans $-\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}_{2}\right]$ 8. A solution of the azine monophosphine $\mathrm{L}^{3}(90 \mathrm{mg}, 0.23 \mathrm{mmol})$ and $\left[\mathrm{PtCl}_{2}(\mathrm{NCMe})_{2}\right](40 \mathrm{mg}, 0.11 \mathrm{mmol})$ in dichloromethane (2 cm^{3}) was stirred for 1 h , until a clear solution was obtained. The solvent was then removed under reduced pressure and the residue triturated with methanol to give the required product 8 as a white solid. Yield $52 \mathrm{mg}, 43 \%$ (Found: C, $54.25 ; \mathrm{H}, 4.85 ; \mathrm{N}$, 4.95. $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pt}$-1.1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 54.2 ; \mathrm{H}, 5.00$; N, 4.95%).
cis- $\left[\mathrm{Pt}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} \quad$ 9b. A solution of the azine monophosphine $\mathrm{L}^{3}(90 \mathrm{mg}, 0.23 \mathrm{mmol})$ in
ethanol $\left(2 \mathrm{~cm}^{3}\right)$ was added to a suspension of $\left[\mathrm{PtCl}_{2}(\mathrm{NCMe})_{2}\right]$ $(40 \mathrm{mg}, 0.11 \mathrm{mmol})$ in dichloromethane $\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was then refluxed under a nitrogen atmosphere for 4 h after which, a saturated solution of ammonium hexafluorophosphate(v) in methanol was then added to precipitate the required product 9 b as a white solid ($76 \mathrm{mg}, 53 \%$) (Found: C , 44.85; $\mathrm{H}, 3.9 ; \mathrm{N}, 4.4 . \mathrm{C}_{50} \mathrm{H}_{54} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pt}$. $1.4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C , $44.85 ; \mathrm{H}, 4.1 ; \mathrm{N}, 4.1 \%$).
cis $-\left[\mathrm{Pt}\left\{\mathrm{PPh}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{Bu}^{\prime}\right)-\mathrm{N}-\mathrm{N}=\mathrm{CHPh}\right\}_{2}\right]$ 11. The complex $\left[\mathrm{PtCl}_{2}(\mathrm{CNMe})_{2}\right](40 \mathrm{mg}, 0.11 \mathrm{mmol})$ and the azine monophosphine $L^{3}(90 \mathrm{mg}, 0.23 \mathrm{mmol})$ were dissolved in dichloromethane $\left(1.5 \mathrm{~cm}^{3}\right)$. Ethanol $\left(1 \mathrm{~cm}^{3}\right)$ was then added and the reaction mixture was refluxed for 3.5 h to give a pale yellow solution. Sodium methoxide $\left(0.673 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in methanol, $0.34 \mathrm{~cm}^{3}, 0.23 \mathrm{mmol}$) was then added, the resultant dark red solution filtered, and the solvents removed under reduced pressure. The required product 11 was obtained as an orange solid. Yield $43 \mathrm{mg}, 40 \%$ (Found: C, $59.85 ; \mathrm{H}, 5.25 ; \mathrm{N}, 5.4$. $\mathrm{C}_{50} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pt} \cdot 0.6 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, $59.80 ; \mathrm{H}, 5.25 ; \mathrm{N}, 5.5 \%$).

Single-crystal X-Ray Diffraction Analysis of Complex 4.-All crystallographic measurements were carried out on a Stoe STADI4 diffractometer operating in the $\omega-\theta$ scan mode using graphite-monochromated Mo-K α X-radiation $(\lambda=71.069 \mathrm{pm})$. The data set was corrected for absorption using azimuthal ψ-scans.
The structure was determined by standard heavy-atom methods and was refined by full-matrix least squares using SHELX 76. ${ }^{15}$ All non-hydrogen atoms were refined with anisotropic thermal parameters and the phenyl groups were treated as rigid bodies with idealised hexagonal symmetry ($\mathrm{C}-\mathrm{C}$ 139.5 pm). All hydrogen atoms were included in calculated positions ($\mathrm{C}-\mathrm{H} 96 \mathrm{pm}$) and were refined with an overall isotropic thermal parameter. The weighting scheme $w=$ $\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0004\left(F_{\mathrm{o}}\right)^{2}\right]^{-1}$ was used. Final non-hydrogen atomic coordinates are given in Table 4. An ORTEP ${ }^{16}$ diagram of the molecular structure of 4 is given in Fig. 1.

Crystal data. $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Pt} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.65 \times 0.5 \times 0.45$ $\mathrm{mm}, M=874.73$ (includes solvent molecule), monoclinic, space group $P 2_{1} / c, a=1261.5(2), b=1794.6(3), c=1792.0(4)$ $\mathrm{pm}, U=3.6675(12) \mathrm{nm}^{3}, Z=4, D_{\mathrm{c}}=1.58 \mathrm{Mg} \mathrm{m}^{-3}, \mu=39.08$ $\mathrm{cm}^{-1}, F(000)=1752$.

Data collection. $4.0<2 \theta<50.0^{\circ}, 6843$ data collected, 4088 with $I>2.0 \sigma(I)$ considered observed, $T=200 \mathrm{~K}$.

Structure refinement. Number of parameters $=381, R=$ $0.0451, R^{\prime}=0.0443$.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC for a post-doctoral research fellowship (to S. D. P.) and for other support. We also thank the Committee of Vice-Chancellors and Principals for an ORS award (to K. K. H.), the trustees of the Lord Edward Boyle Foundation for a research scholarship (to K. K. H.) and the University of Leeds for the Tetley and Lupton Scholarship (to K. K. H.).

References

1 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 2361.
2 P. S. Pregosin and R. W. Kunz, ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR of Transition Metal Phosphine Complexes, Springer, Berlin, Heidelberg, New York, 1979.
3 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 999 and refs therein.
4 J. D. Ruddick and B. L. Shaw, J. Chem. Soc. A, 1969, 2801.
5 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 1469.

6 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1993, 3653.
7 J. D. Kennedy, W. McFarlane, R. J. Puddaphatt and P. J. Thompson, J. Chem. Soc., Dalton Trans., 1976, 874.
8 D. E. Clegg, J. R. Hall and G. A. Swile, J. Organomet. Chem., 1972, 38, 403.

9 A. Albanati, P. S. Pregosin and F. Wombacher, Inorg. Chem., 1990, 29, 1812.
10 J.-T. Chen, T.-M. Huang, M.-C. Cheng, Y.-C. Lin and Y. Wang, Organometallics, 1992, 11, 1761.
11 D. A. Redfield, J. H. Nelson and L. W. Cary, Inorg. Nucl. Chem. Lett., 1974, 10, 727.

12 J. M. Jenkins and B. L. Shaw, J. Chem. Soc. A, 1966, 770.
13 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81
14 G. K. Anderson and R. J. Cross, J. Chem. Soc., Dalton Trans., 1979, 1246.

15 G. M. Sheldrick, SHELX 76, program system for X-ray structure determination, University of Cambridge, 1976.
16 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, TN, 1976.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

