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Quantum search algorithms on graphs are generally faster than their classical counterparts. Grover 

dynamics, a widely used quantum walk operator in search algorithms, works extremely well for many 

classes of graphs when searching for a marked vertex. However, due to the properties of the Grover 

dynamics, it does not perform well on cyclic graphs. In contrast, the tailed model of quantum walks 

guarantees the convergence of the walker’s state, whereas in standard quantum walks, convergence is 

not guaranteed. Literature indicates that, similar to the usual quantum search algorithms, the tailed 

quantum search also performs well for complete graphs, with a finding probability of approximately 

0.5 in the long run. In our work, we propose using Grover dynamics within the tailed model for 

searching on cyclic graphs. We demonstrate the quantum search on the smallest cyclic graphs, and we 

show through computation that the quantum search works effectively on cyclic graphs with up to 5 

vertices using the tailed model. Furthermore, we show that the finding probabilities of a marked vertex 

in these cyclic graphs exceed 0.5. 
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INTRODUCTION  

 

Quantum computing is one of the rapidly developing fields of study. Quantum walks is a tool in 

quantum computing used to address certain computational problems, such as the search problem, the 

element distinctness problem, and the network characterization problem [7, 8]. Quantum walks are a 

quantum analogue of classical random walks, where a quantum dynamic is applied to accelerate the 

algorithm compared to classical algorithms. Grover’s algorithm is one such quantum search algorithm 

that searches a given item in an array of 𝑵 data elements with high accuracy in 𝑶(√𝑵) steps, whereas 

a classical algorithm would require 𝑶(𝑵) steps [2]. A similar algorithm can be used to search for a 

particular vertex, called the marked vertex, on graphs where the dynamics of the algorithm is defined 

using Grover dynamics on each vertex. Compared to the classical search algorithms on graphs which 

have the run time 𝑶(𝑵), the Grover search algorithm on graphs has a quadratic speed up with the run 

time 𝑶(√𝑵) [5]. 

 

The Grover search algorithm works well on most classes of graphs, such as lattices, hypercubes [5] and 

Johnson graphs [6]. However, due to the properties of the Grover dynamics, the search does not perform 

well on cyclic graphs. To address this problem, we altered our model by connecting semi-infinite length 

paths, called tails, to all the vertices of the cyclic graph. The tailed model of quantum walks was first 

described in [1], which demonstrates quantum scattering. One important characteristic of the tailed 

model is the convergence of the state of the walk, while in the usual Grover model, the convergence of 

the state is not guaranteed [4]. Utilizing this property of convergence, it has been proved that the 

quantum search performs well for complete graphs in the convergent state [3, 9]. In our work, we 

describe a quantum search using the tailed model on cyclic graphs. As a trial, we compute the 

probability of finding a marked vertex on the cyclic graphs with up to 5 vertices. 

 

METHODOLOGY 

 

Let us denote the cyclic graph with 𝒏 vertices by 𝑪𝒏 = (𝑽,𝑬), where 𝑽 and 𝑬 represent the sets of 

vertices and edges, respectively. Connect semi-infinite length paths to all the vertices. We adopt the 

setting of the walk from [3], where each edge in the graph is replaced by two symmetric arcs with 

opposite directions and denote the set of arcs by 𝑨. For each arc 𝒂 ∈ 𝑨 from the vertex 𝒖 to the vertex 

𝒗, we denote 𝒖, the origin of 𝒂 by 𝒐(𝒂) = 𝒖 and 𝒗, the terminus of 𝒂 by 𝒕(𝒂) = 𝒗. We denote the 

inverse arc of 𝒂 by 𝒂̅ ,where 𝒐(𝒂) = 𝒗 and 𝒕(𝒂) = 𝒖. Let the marked vertex be 𝒘 and the state of the 

walker be a function 𝝓 ∈ ℂ𝑨 with ||𝝓||
𝟐
= 𝟏,  where 𝝓(𝒂) denotes the probability amplitude on the 

arc 𝒂. The time evolution operator 𝑼 of the walk is defined by  

𝑈𝑎,𝑏 =

{
 
 

 
 −(

2

deg(𝑜(𝑎))
− 𝛿𝑎,𝑏̅)  𝑖𝑓 𝑜(𝑎) = 𝑡(𝑎) = 𝑤,

(
2

deg(𝑜(𝑎))
− 𝛿𝑎,𝑏̅)  𝑖𝑓 𝑜(𝑎) = 𝑡(𝑎) ≠ 𝑤,

0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Here 𝛿𝑥,𝑦  is the Kronecker delta function defined by  

𝛿𝑥,𝑦 = {
1  𝑖𝑓 𝑥 = 𝑦,
0  𝑥 ≠ 𝑦.
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Let us denote the state of the walker at time step 𝑡 by 𝜙𝑡, then for a given initial state 𝜙0, the state of 

the walker at time step 𝑡 is given recursively by 𝜙𝑡 = 𝑈𝜙𝑡−1 where 𝑈 is the time evolution operator of 

the walk. We choose the initial state such that every arc on the tails towards the cycle has a probability 

amplitude of 1, and the remaining probability amplitudes are 0. By observing the symmetry, we denote 

the probability amplitudes as follows: 

𝜙𝑡(𝑎) = {
𝑎𝑡
(𝑙)
 if dist(𝑜(𝑎), 𝑤) = 𝑙 and dist(𝑡(𝑎), 𝑤) = 𝑙 − 1,

𝑎̅𝑡
(𝑙)
 if dist(𝑜(𝑎), 𝑤) = 𝑙 − 1 and dist(𝑡(𝑎), 𝑤) = 𝑙.

 

 

 

RESULTS AND DISCUSSION 

 

It is already known that the quantum search performs well on the smallest cyclic graph 𝑪𝟑 when the 

tails are connected, as 𝑪𝟑 is a complete graph and the search performs well on the complete graphs with 

connected tails [4]. We demonstrate the search algorithm on the cyclic graph with 5 vertices. The 

following figure shows the probability amplitudes at the time step 𝒕. 
 

When 𝒏 is odd 

 

Cyclic graph of 5; 𝑪𝟓  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 1 

By the dynamics of the walk, we get the following system of recursions with the initial conditions 𝑎0
(𝑙)
=

𝑎̅0
(𝑙)
= 0 for all 𝑙. 

𝒂𝒕
(𝟏)
=
𝟐

𝟑
−
𝟏

𝟑
𝒂̅𝒕−𝟏
 (𝟏) +

𝟐

𝟑
𝒂𝒕−𝟏
(𝟐)

 

𝒂̅𝒕
(𝟏)
= −

𝟐

𝟑
−
𝟏

𝟑
𝒂𝒕−𝟏
 (𝟏)               

𝒂𝒕
(𝟐)
=
𝟐

𝟑
−
𝟏

𝟑
𝒂̅𝒕−𝟏
(𝟐)

+
𝟐

𝟑
𝒂𝒕−𝟏
 (𝟑)

 

𝒂̅𝒕
(𝟐)
=
𝟐

𝟑
+
𝟐

𝟑
𝒂̅𝒕−𝟏
 (𝟏) −

𝟏

𝟑
𝒂𝒕−𝟏
(𝟐)

 

𝒂𝒕
(𝟑)
=
𝟐

𝟑
+
𝟐

𝟑
𝒂̅𝒕−𝟏
 (𝟐) −

𝟏

𝟑
𝒂𝒕−𝟏
(𝟑)

 

By observing the coefficient matrix and the constant vector, we write the system  

𝑎𝑡
(1)

 

𝑎̅𝑡
 (1)  

𝑎𝑡
(1)

 

𝑎̅𝑡
 (1)  

𝑎̅𝑡
 (2)  

𝑎̅𝑡
 (2)  

𝑎𝑡
(2)

 

𝑎𝑡
(2)

 

𝑎𝑡
(3)

 

𝑎𝑡
(3)
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𝜑𝑡: =

(

 
 
 
 

𝑎𝑡
(1)

𝑎̅𝑡
(1)

𝑎𝑡
(2)

𝑎̅𝑡
(2)

𝑎𝑡
(3)
)

 
 
 
 

= 𝐴𝜑𝑡−1 + 𝐵 

where 𝑨 =

[
 
 
 
 
 
 
 0 −

1

3

2

3
0 0

−
1

3
0 0 0 0

0 0 0 −
1

3

2

3

0
2

3
−
1

3
0 0

0 0 0
2

3
   −

1

3]
 
 
 
 
 
 
 

  and, 𝐵 =

(

 
 
 
 
 

2

3

−
2

3
2

3
2

3
2

3 )

 
 
 
 
 

 

 

Note that 𝜙𝑡  is the state of the walker at time step 𝑡 while 𝜑𝑡 represents the vector of the probability 

amplitudes in the system above. We observe that the probability amplitudes in 𝜑𝑡 are contained within 

𝜙𝑡, and additionally, 𝜙𝑡 includes the repeating probability amplitudes. According to [4], lim
𝑡→∞

𝜙𝑡 exists 

and consequently lim
𝑡→∞

𝜑𝑡 exists as well (denoted by 𝜑∞).  

Taking limit   

lim
𝑡→∞

𝜑𝑡 = lim
𝑡→∞

𝐴𝜑𝑡−1 + 𝐵 

𝜑∞ = 𝐴𝜑∞ + 𝐵 

𝜑∞(𝐼 − 𝐴) = 𝐵 

𝜑∞ = (𝐼 − 𝐴)−1𝐵 

By solving this system and scaling the in a similar way in [4], we get 𝜑∞ =
4

√189

(

 
 
 
 

7

3

−
5

4

1

−
1

2
1

4 )

 
 
 
 

 

As shown in [4], the probability of finding 𝑤 in the long run is given by  

𝑝(𝑤) = ∑ |𝜙∞(𝑎)|
2

𝑎:𝑡(𝑎)=𝑤 = 2 |𝑎𝑡
(1)
|
2
=

98

189
. 

We emphasize that the probability of finding the marked vertex is greater than 0.5, which confirms that 

the quantum search on 𝐶5 works well with the tailed model. 

 

When 𝒏 is even 

 

Cyclic graph of 4; 𝑪𝟒  

 
 

 
 

𝑎̅𝑡
 (1)  𝑎𝑡

(2)
 



Proceeding of the International Research Conference of the Open University of Sri Lanka (IRC-OUSL 2024) 
 

 

 ISSN 2012-9912 © The Open University of Sri Lanka       5 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 2 

By the dynamics of the walk, we get the following system of recursions with the initial conditions 𝑎0
(𝑙)
=

𝑎̅0
(𝑙)
= 0 for all 𝑙. 

𝒂𝒕
(𝟏)
=
𝟐

𝟑
−
𝟏

𝟑
𝒂̅𝒕−𝟏
 (𝟏)

+
𝟐

𝟑
𝒂𝒕−𝟏
(𝟐)

 

𝒂̅𝒕
(𝟏)
= −

𝟐

𝟑
−
𝟏

𝟑
𝒂𝒕−𝟏
 (𝟏)
              

𝒂𝒕
(𝟐)
=
𝟐

𝟑
+
𝟏

𝟑
𝒂̅𝒕−𝟏
(𝟐)
                   

𝒂̅𝒕
(𝟐)
=
𝟐

𝟑
+
𝟐

𝟑
𝒂̅𝒕−𝟏
 (𝟏) −

𝟏

𝟑
𝒂𝒕−𝟏
(𝟐)

 

By observing the coefficient matrix and the constant vector, we have the system  

𝜑𝑡: =

(

  
 

𝑎𝑡
(1)

𝑎̅𝑡
(1)

𝑎𝑡
(2)

𝑎̅𝑡
(2)
)

  
 
= 𝐴𝜑𝑡−1 + 𝐵 

 

where 𝐴 =

[
 
 
 
 
 0 −

1

3

2

3
0

−
1

3
0 0 0

0 0 0
1

3

0
2

3
−
1

3
0]
 
 
 
 
 

 and,  𝐵 =

(

 
 
 

2

3

−
2

3
2

3
2

3 )

 
 
 

 

By solving this system and scaling similar to the search in 𝐶5, we get 𝜑∞ =
7

4√23

(

 
 
 

10

7

−
8

7
4

7

−
2

7)

 
 
 

 

The probability of finding 𝑤 in the long run is given by 

𝑝(𝑤) = ∑ |𝜙∞(𝑎)|
2

𝑎:𝑡(𝑎)=𝑤 = 2 |𝑎𝑡
(1)
|
2
=

25

46
. 

We emphasize again that the probability of finding the marked vertex is greater than 0.5, which confirms 

𝑎𝑡
(1)

 

𝑎𝑡
(1)

 

𝑎̅𝑡
 (1)  

𝑎̅𝑡
 (2)  

𝑎𝑡
(2)

 

𝑎̅𝑡
(2)
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that the quantum search on 𝐶4 works well with the tailed model. 

 

CONCLUSIONS/RECOMMENDATIONS 

The standard Grover search algorithm does not perform well on cyclic graphs. To address this issue, we 

use the tailed model for the search algorithm. We have demonstrated that the quantum search algorithm 

works effectively on 𝐶5. Intuitively, it can be expected that quantum search will work well on cyclic 

graphs in general. Furthermore, our model shows that, in the long run, the probability of finding the 

marked vertex exceeds 0.5. The model is more efficient when, for a given finding probability, the 

minimum run time of the algorithm is known, which indicates when the measurement of the state should 

be made to achieve the desired finding probability. 

 

REFERENCES 

 

[1] Feldman, E., & Hillery, M. (2005). Quantum walks on graphs and quantum scattering 

theory. Coding Theory and Quantum Computing, 381, 71-95. 

[2] Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack. Physical 

review letters, 79(2), 325. 

[3] Higuchi, Y., Sabri, M., & Segawa, E. (2023). Toward fixed point and pulsation quantum search on 

graphs driven by quantum walks with in-and out-flows: a trial to the complete graph. Quantum Studies: 

Mathematics and Foundations, 10(3), 307-316. 

[4] Higuchi, Y., & Segawa, E. (2019). A dynamical system induced by quantum walk. Journal of 

Physics A: Mathematical and Theoretical, 52(39), 395202. 

[5] Portugal, R. (2013). Quantum walks and search algorithms (Vol. 19). New York: Springer. 

[6] Tanaka, H., Sabri, M., & Portugal, R. (2022). Spatial search on Johnson graphs by discrete-time 

quantum walk. Journal of Physics A: Mathematical and Theoretical, 55(25), 255304. 

[7] Venegas-Andraca, S. (2022). Quantum walks for computer scientists. Springer Nature.  

[8] Wang, J., & Manouchehri, K. (2013). Physical implementation of quantum walks. Heidelberg, 

Springer Berlin. 

[9] Xie, W., & Tamon, C. (2023). Optimality of spatial search in graphs with infinite tail. Physical 

Review A, 107(3), 032416. 

 

 


